

Nuclotron based Ion Colider fAcility

Статус эксперимента MPD-NICA

В. Рябов, ЛРЯФ ОФВЭ

NICA Project

- Megascience project in Russia, which is approaching its full commissioning:
 - \checkmark already running in the fixed-target mode BM@N
 - \checkmark start of operation in collider mode in 2023-2024 MPD and later SPD
- Expected beam configuration in Stage-I:
 - \checkmark not-optimal beam optics with wide z-vertex distribution, σ_z ~ 50 cm
 - ✓ reduced luminosity (~10²⁵) → collision rate ~ 50 Hz
 - ✓ collision system available with the current sources: C (A=12), N (A=14), Ar (A=40), Fe (A=56), Kr (A=78-86), Xe (A=124-134), Bi (A=209) → start with Bi+Bi @ 9.2 GeV in 2023-2024

NICA Relativistic heavy-ion collisions

- At $\mu_B \sim 0$, smooth crossover (lattice QCD calculations + data)
- ↔ At large μ_B , 1st order phase transition is expected → QCD critical point
- ✤ At NICA, both BM@N and MPD study QCD medium at extreme net baryon densities
- ✤ Many ongoing (HADES, NA61/Shine, STAR-BES) and future experiments in ~ same energy range
- MPD strategy high-luminosity scans in energy and system size
 - \checkmark order of the phase transition and search for the QCD critical point \rightarrow structure of the QCD phase diagram
 - \checkmark hypernuclei and equation of state at high baryon densities \rightarrow inner structure of compact start, star mergers
- Scans to be carried out using the same apparatus with all the advantages of a collider experiment
 - \checkmark maximum phase space, minimally biased acceptance, free of target parasitic effects
 - \checkmark correlated systematic effects for different systems and energies \rightarrow simplified extraction of physical signals

- ✤ Stages of the accelerator complex commissioning
 - ✓ HILAC + transfer line to Booster → commissioned in 2018 with He¹⁺, Fe¹⁴⁺, C⁴⁺, Ar¹⁴⁺ and Xe²⁸⁺

A/q (Target Ion Au ³¹⁺)	6.25
Beam current	< 10 emA
Repetition rate	< 10 Hz
Output energy	3.2 MeV/u

Beam transition through the Booster injection beam line ~ 75%

- Stages of the accelerator complex commissioning
 - ✓ HILAC + transfer line to Booster → commissioned in 2018 with He¹⁺, Fe¹⁴⁺, C⁴⁺, Ar¹⁴⁺ and Xe²⁸⁺
 - ✓ HILAC + Booster → first run in November-December, 2020 with He¹⁺, energy up to 100 MeV/u
 - ✓ HILAC + Booster + transfer line to Nuclotron → second run in October, 2021 with He¹⁺ and Fe¹⁶⁺

He⁺ and Fe14⁺ ions, energy up to 578 MeV/u, residual gas pressure sufficiently low for heavy ions Beam extraction from the Booster and transport line to the Nuclotron are put into operation and tuned He⁺ and Fe14⁺ beams were transported through the beam transfer line to Nuclotron

- Stages of the accelerator complex commissioning
 - ✓ HILAC + transfer line to Booster → commissioned in 2018 with He¹⁺, Fe¹⁴⁺, C⁴⁺, Ar¹⁴⁺ and Xe²⁸⁺
 - ✓ HILAC + Booster → first run in November-December, 2020 with He¹⁺
 - ✓ HILAC + Booster + transfer line to Nuclotron → second run in October, 2021 with He¹⁺ and Fe¹⁶⁺
 - ✓ HILAC + Booster + Nuclotron + transfer line to BM@N → third run in Jan.-Apr., 2022 with C⁶⁺

Booster

Nuclotron

Average efficiency ~ 30%, non-optimum stripping target thickness 3 GeV/u Carbon beam transported to BM@N area : 5.03 – 29.03 2150 h of the facility operation, BM@N stable operation with beams for 24 days SRC Collaboration collected 185 M events of carbon interactions with hydrogen target

- Stages of the accelerator complex commissioning
 - ✓ HILAC + transfer line to Booster → commissioned in 2018 with He¹⁺, Fe¹⁴⁺, C⁴⁺, Ar¹⁴⁺ and Xe²⁸⁺
 - ✓ HILAC + Booster → first run in November-December, 2020 with He¹⁺
 - ✓ HILAC + Booster + transfer line to Nuclotron → second run in October, 2021 with He¹⁺ and Fe¹⁶⁺
 - ✓ HILAC + Booster + Nuclotron + transfer line to BM@N → third run in Jan. –Apr., 2022 with C⁶⁺
 - ✓ ESIS + HILAC + Booster + modified Nuclotron + transfer line to BM@N -> fourth run started in September, 2022 with Ar and Xe beams → beams at BM@N to collect ~ 2.10⁹ events

Beam of Xe on the phosphor screen at the end section of the Booster-Nuclotron transport line

Accelerator, next steps

✤ All arc dipole magnets are installed in the tunnel

✤ Future plans:

- ✓ August-September, 2023 → technological run of NICA without beams
- \checkmark End of 2023: first run with beams in the collider rings

TPC: $|\Delta \phi| < 2\pi$, $|\eta| \le 1.6$ **TOF, EMC**: $|\Delta \phi| < 2\pi$, $|\eta| \le 1.4$ **FFD**: $|\Delta \phi| < 2\pi$, 2.9 < $|\eta| < 3.3$ **FHCAL**: $|\Delta \phi| < 2\pi$, 2 < $|\eta| < 5$

+ forward spectrometers

Au+Au @ 11 GeV (UrQMD + full chain reconstruction)

MPD subsystems in production

SC Solenoid + Iron Yoke

Goal is to cool down and power the magnet + magnetic field measurements in 2023

Support structure

support structure of carbon fiber sagite ~ 5 mm; $0,13 X_0$

Constructed and delivered

See <u>http://mpd.jinr.ru/doc/mpd-tdr/</u> for details

TPC – central tracking detector

~ 100% of MRPCs (modules) are

ready, cosmic tests ongoing

TOF

ECAL (projective geometry)

8 sectors = 16 half sectors = 768 modules = 12288 towers

38 400 towers 66-83% of the whole detector will be produced for Stage-I

Pb+Sc type to

Pb+Sc "shashlyk"type towers

В. Рябов - MPD, сессия ОФВЭ - 2022

MPD status and plans

- ***** 2022:
 - \checkmark preparation of the SC magnet for cooling
- ***** 2023:
 - ✓ cooling the magnet and MF measurement
 ✓ installation of the support frame and detectors
- ***** 2024:
 - ✓ MPD commissioning
 - ✓ first run with BiBi@9.2 GeV, ~ 50-100 M events for alignment, calibration and physics
- ✤ 2025 and beyond:
 - ✓ Au+Au @ 11 GeV, design luminosity
 - \checkmark system size and collision energy scans
- Preparation of the MPD detector and experimental program is ongoing, all activities are continued
- All components of the MPD 1-st stage detector are in advanced state of production (subsystems, support frame, electronics platforms, LV/HV, control systems, cryogenics, cabling, etc.)

Schedule of the MPD-NICA is significantly affected by the current geopolitical situation (suspension of collaboration with CERN and Polish & Czech Republic member institutions, economical sanctions and problems with supplies of many components from western companies). The primary goal to have the MPD commissioned by the first beams at NICA collider is preserved.

NICA

Collaboration activity

- MPD publications: over 200 in total for hardware, software and physics studies (SPIRES)
- First collaboration paper recently published EPJA (~ 50 pages): Eur.Phys.J.A 58 (2022) 7, 140
 Status and initial physics performance studies of the MPD experiment at NICA

- ✤ MPD @ conferences: presented at all major conferences in the field:
 - ✓ Quark Matter (QM-2022), April 4-10
 - ✓ Nucleus-2022, July 11-16
 - ✓ ICHEP-2022, July 6-13
 - ✓ NST-2022, September 26-30

- ✓ EuNPC-2022, October 24-28
- ✓ DAE-BRNS CETHENP-2022, November 15-17
- ✓ XVIII MWPF, November 21-25
- ✓ ICPPA-2022, November, 29-December, 2

Possible contributions

1. Forward spectrometers for Phase-II MPD detector:

- ✓ Physics tasks for forward spectrometers, what observables should be studied at $|\eta| > 1-1.5$ (global hyperon polarization and vector meson spin alignment, angular distribution of fragments for the database, higher precision for integrated particle yields, ???)
- ✓ Understanding background situation in heavy-ion collisions
- \checkmark Design of the forward spectrometer, see p.1
- \checkmark Production of the detectors for the spectrometer

Possible contributions

2. Trigger system for pp and light A-A collisions:

- FFD (Fast Forward Detector):
 - ✓ fast event triggering, T_0 for TOF and ECAL

- FHCAL (Forward Hadron Calorimeter):
 - \checkmark fast event triggering, reaction plane detector

- MPD challenges at NICA energies:
 - ✓ low multiplicity of particles produced in heavy-ion collisions
 - ✓ particles are not ultra-relativistic (even the spectator protons)

Trigger efficiency vs. z-vertex

DCM-QGSM-SMM, BiBi@9.2: trigger efficiency is 90-95% for different trigger configuration

- DCM-QGSM-SMM, CC@9.2: trigger efficiency < 50%; pp@9.2: efficiency vanishingly small</p>
- The existing trigger system does not provide high enough efficiency in light A-A and pp collisions
- ✤ Need to develop another (additional) system on the basis of existing STAR event plane or ALICE V0:
 - ✓ evaluate design (distance in z from vertex, radius, segmentation)
 - \checkmark build and test the prototypes
- 3. Further development of the MPD physics program with focus on new signals/observables which would be unique for the MPD

Summary

- Preparation of the MPD detector and experimental program is ongoing, all activities are continued
- ✤ All components of the MPD 1-st stage detector are in advanced state of production
- Commissioning of the MPD Stage-I detector and the first data taking with BiBi@9.2 in 2024

BACKUP

В. Рябов - МРД, сессия ОФВЭ - 2022

RHIC BES program

♦ Data taking by STAR at RHIC: $3 < \sqrt{s_{NN}} < 200 \text{ GeV} (750 < \mu_B < 25 \text{ MeV})$

Au+Au Collisions at RHIC											
Collider Runs					Fixed-Target Runs						
	√ <mark>S_{NN}</mark> (GeV)	#Events	μ_B	Ybeam	run		√ S_{NN} (GeV)	#Events	μ_B	Y _{beam}	run
1	200	380 M	25 MeV	5.3	Run-10, 19	81	13.7 (100)	50 M	280 MeV	-2.69	Run-21
2	62.4	46 M	75 MeV	2	Run-10	2	11.5 (70)	50 M	320 MeV	-2.51	Run-21
3	54.4	1200 M	85 MeV	10	Run-17	3	9.2 (44.5)	50 M	370 MeV	-2.28	Run-21
4	39	86 M	112 MeV		Run-10	4	7.7 (31.2)	260 M	420 MeV	-2.1	Run-18, 19, 20
5	27	585 M	156 MeV	3.36	Run-11, 18	5	7.2 (26.5)	470 M	440 MeV	-2.02	Run-18, 20
6	19.6	595 M	206 MeV	3.1	Run-11, 19	6	6.2 (19.5)	120 M	490 MeV	1.87	Run-20
7	17.3	256 M	230 MeV	8 X	Run-21	7	5.2 (13.5)	100 M	540 MeV	-1.68	Run-20
8	14.6	340 M	262 MeV	55	Run-14, 19	8	4.5 (9.8)	110 M	590 MeV	-1.52	Run-20
9	11.5	157 M	316 MeV	~	Run-10, 20	9	3.9 (7.3)	120 M	633 MeV	-1.37	Run-20
10	9.2	160 M	372 MeV		Run-10, 20	10	3.5 (5.75)	120 M	670 MeV	-1.2	Run-20
11	7.7	104 M	420 MeV	65	Run-21	н	3.2 (4.59)	200 M	699 MeV	-1.13	Run-19
				0		12	3.0 (3.85)	2000 M	750 MeV	-1.05	Run-18, 21
		•									• • • • • • • • • • • • • • • • • • •

- A very impressive and successful program with many collected datasets, already available and expected results
- ✤ Limitations:
 - ✓ Au+Au collisions only
 - ✓ Among the fixed-target runs, only the 3 GeV data have full midrapidity coverage for protons (|y| ≤ 0.5), which is crucial for physics observables

MPD strategy

- MPD strategy high-luminosity scans in <u>energy</u> and <u>system size</u> to measure a wide variety of signals:
 ✓ order of the phase transition and search for the QCD critical point → structure of the QCD phase diagram
 ✓ hypernuclei and equation of state at high baryon densities → inner structure of compact start, star mergers
- Scans to be carried out using the <u>same apparatus</u> in the same configuration/geometry with all the advantages of collider experiments:
 - \checkmark maximum phase space, minimally biased acceptance, free of target parasitic effects
 - \checkmark correlated systematic effects for different systems and energies \rightarrow simplified extraction of physical signals
- Continuously develop physical program based on the recent advancements in the field:
 ✓ identified particle spectra and ratios, collective flow and femtoscopy, production of strangeness and hypernuclei net-proton fluctuations, global polarization of hyperond and spin alignment of vector mesons, dilepton continuum and LVMs, etc.
- Work in close cooperation with theoreticians to look for new signals/observables including those unique for the MPD
 - \checkmark direct photons
 - \checkmark system size scan collective flow, strangeness enhancement
 - ✓ applied research → high energy heavy-ion reaction database, input for transport codes (Geant-4, Fluka, PHITS, etc)

Multi-Purpose Detector (MPD) Collaboration

MPD International Collaboration was established in **2018** to construct, commission and operate the detector

10 Countries, >450 participants, 33 Institutes and JINR

Organization

Acting Spokesperson: Deputy Spokesperson: Institutional Board Chair: Project Manager: Victor Riabov Zebo Tang Alejandro Ayala Slava Golovatyuk

Joint Institute for Nuclear Research;

AANL, Yerevan, Armenia; University of Plovdiv, Bulgaria; Tsinghua University, Beijing, China; USTC, Hefei, China; Huzhou University, Huizhou, China; Institute of Nuclear and Applied Physics, CAS, Shanghai, China; Central China Normal University, China; Shandong University, Shandong, China; IHEP, Beijing, China; University of South China, China; Three Gorges University, China; Institute of Modern Physics of CAS, Lanzhou, China; Tbilisi State University, Tbilisi, Georgia; Benemérita Universidad Autónoma de Puebla, Mexico: Centro de Investigación y de Estudios Avanzados, Mexico; Instituto de Ciencias Nucleares, UNAM, Mexico; Universidad Autónoma de Sinaloa, Mexico: Universidad de Colima, Mexico; Universidad de Sonora, Mexico; Institute of Applied Physics, Chisinev, Moldova; Institute of Physics and Technology, Mongolia;

В. Рябов - МРД, сессия ОФВЭ - 2022

Belgorod National Research University, **Russia**; INR RAS, Moscow, **Russia**; MEPhl, Moscow, **Russia**; Moscow Institute of Science and Technology, **Russia**; North Osetian State University, **Russia**; NRC Kurchatov Institute, **Russia**; Plekhanov Russian University of Economics, Moscow, **Russia**; St. Petersburg State University, **Russia**; SINP, Moscow, **Russia**; PNPI, Gatchina, **Russia**; Vinča Institute of Nuclear Sciences, **Serbia**; Pavol Jozef Šafárik University, Košice, **Slovakia**