

национальный исследовательский центр «КУРЧАТОВСКИЙ ИНСТИТУТ»

Петербургский институт ядерной физики им. Б. П. Константинова

Разработка системы сцинтилляционных детекторов для подавления космического излучения в рамках проекта по исследованию реакции ядерного dd-синтеза с поляризацией исходных частиц при низких энергиях (PolFusion)

> Рождественский А.Ю. аспирант 2-го курса ПИЯФ, ОФВЭ, ЛКСТ

Астрофизика

- Big bang
- Hydrogen burning
- Helium burning
- Advanced burning
- (carbon/neon/oxyge n/silicon)
- s-process (neutron sources)
- p-process

Теория ядерного взаимодействия

- Широкий спектр моделей
- Сложности при описании прямых/непрямых измерений

Термоядерная энергетика

- Использованиее поляризованного топлива
- Увеличение сечения
- Управление угловым распределением вылета продуктов реакции
- Реакторы с малым выходом нейтронов

Прикладные аспекты

- Наработка трития и гелия-3
- ЗНеориентированная технология газоразрядных детекторов
- Источник нейтронов для наработки медицинских изотопов 100Mo(n,2n)99Mo

Big Bang нуклеосинтез — Первичное распределение изотопов D/H

Вклад ошибки в первичное распределение

Global BBN Analysis: Tsung-Han Yeh, Keith Olive, Brian Fields (2021)

Anton Rozhdestvenskij

Ofelia Pisanti, Gianpiero Mangano, Gennaro Miele, and Pierpaolo Mazzella Primordial Deuterium after LUNA: concordances and error budget (2020) Отношения сечений процессов d(d, n)³He к d(d, p)³H из экспериментов (точки) и теории (сплошная линия).

> Необходимы новые измерения сечения реакции неполяризованного dd-синтеза по обоим каналам!

Теоретическое предсказание:

K. Arai, S. Aoyama, Y. Suzuki, P. Descouvemont, and D. Baye Phys. Rev. Lett. 107, 132502 (2011)

Э Термоядерный синтез и прикладные аспекты

- Увеличение сечения реакции
- Контроль над направлением разлета продуктов реакции
- Подавление нейтронного канала

Exp.: Ch. Leemann et al., Helv. Phys. Acta **44**, 141 (1971) Theor.: G. Hupin et al. Nature Com. **10**, 321 (2019)

Распределения источников нейтронов в координатах (R, Z) для (а) неполяризованного случая и (б) случая полной параллельной поляризации.

W.Yang, G.Li, X.Gong, X.Gao, X.Li, H.Li... Effect of the Fusion Fuels' Polarization on Neutron Wall Loading Distribution in CFETR (2021) https://doi.org/10.1080/15361055.2021.1969064 (China Fusion Engineering Test Reactor (CFETR)) **О История изучения реакции ядерного dd-синтеза**

$\sigma(heta,\phi)=\sigma_0(heta)\left(1+\sum\limits_1^9p_j^bA_j^b(heta)+\sum\limits_1^9p_j^tA_j^t(heta)+\sum\limits_1^9\sum\limits_1^9p_j^bp_k^tC_{j,k}(heta) ight)$				
Тип эксперимента	Наблюдаемые	$p_{l'}\sigma(heta,\phi)=\sigma_0(heta)\left(P_{l'}(heta) ight)$	$(\theta) + \sum_{j=1}^{9} p_j K_j^{l'}(\theta) \Big)$ Gerald G. Ohlsen, Rep. Prog. Phys. 35 , 717 (1972) р-канал	
${}^2ec{H}(ec{d},p){}^3H$ ${}^2ec{H}(ec{d},n){}^3He$	$C_{z,z} C_{y,y}$ $C_{zz,zz} C_{y,zz}$ $C_{y,xz} C_{zz,xz}$	PolFusion	п-канал	
$^{2}H(\vec{d},\vec{p})^{3}H$ $^{2}H(\vec{d},\vec{n})^{3}He$	$K^{x'}_x \dots K^{y'}_y$	•	Imig A. et al., Phys. Rev. C 73, 024001 (2006) Katabuchi T. et al., Phys. Rev. C 64, 047601 (2001)	
${}^{2}H(\vec{d},p){}^{3}H$ ${}^{2}H(\vec{d},n){}^{3}He$	$\begin{array}{c} & A_y \\ A_{xz} & A_{zz} \\ A_{xx} - A_{yy} \end{array}$	• • • • • •	 Tagishi Y. et al., Nucl. Instrum. Methods Phys. Res. A 402, 436 (1998) Fletcher K. A. et al., Phys. Rev. C 49, 2305 (1994) Tagishi Y. et al., Phys. Rev. C 46, R1155 (1992) Becker B. et al., Few-Body Syst. 13, 19 (1992) 	
${}^{2}H(d, \vec{p}){}^{3}H$ ${}^{2}H(d, \vec{n}){}^{3}He$	$P_{y'}$	• •	 Behof A. F., May T. H., McGarry W. I., Nucl. Phys. A108, 250 (1968) Haegnsgen H., et al., Nucl. Phys. 73, 417 (1965) Rogers J. T. and Bond C. D., Nuclear Physics 53 (1964) 297 Kane P. P., Nuclear Physics 10 (1959) 429 	
$^{2}H(d,p)^{3}H$ $^{2}H(d,n)^{3}He$	σ ₀		 Brown R. E. and N. Jarmie, Phys. Rev. C 41, 1391 (1990) Krauss A. et al., Nucl. Phys. A465, 150 (1987) Theus R. B., W. I. McGarry, and L. A. Beach, Nucl. Phys. 80, 273 (1966) McNeill K. G., Phil. Mag. 46 (1955) 800; Arnold W. R. et al., Phys. Rev. 93 (1954) 483 Moffat J., D. Roaf and J. H. Sanders, Proc. Roy. Soc. A212 (1952) 220 Wenzel W. A. and W. Whaling, Phys. Rev. 88 (1952) 1149 Bretscher E., A. P. French and F. G. P. Seidl, Phys. Rev. 73 (1948) 815 	
	0	50 100 Рождественский А.	150 E_{cm}, keV 10.	

7

Новейшие исследования

Наблюдаемые $A_{zz,0}$ и $A_{xx,0} - A_{yy,0}$ для реакций \vec{d} (d, p) ³H и \vec{d} (d, n) ³He при Td = 21 keV. Голубые полосы показывают результаты настоящих расчетов.

QSF для реакций d(d, n) ³He и d(d, p) ³H.

M. Viviani: arXiv:2207.01433v1 [nucl-th] 4 Jul 2022

Экспериментальная установка

РОLІS Источник поляризованных ионов

Ионный пучок 10-50 кэВ 1.2· 10¹⁶ атомов/с

Сопло: d = 1.3 мм T = 65 К

4π – детектор

РАВЅ Источник поляризованных атомов

Атомарный пучок 0.01 эВ 4· 10¹⁶ атомов/с

Сопло: d = 2 мм T = 65-85 К

• Поляриметр

Э Детекторная система

Внешний вид детектора

Координатная система

Внутреннее устройство детектора

Результаты 2020 года

• Сцинтилляционный детектор

Моделирование в Geant 4

Геометрия детектора в Geant 4

- 1 Вакуумная камера
- 2 Сцинтилляторы
- 3 PIN диоды
- 4 Печатные платы

Красный - р Синий – t Зеленый – He3

• Генератор космического излучения

Старый генератор

Генератор EcoMug

D. Pagano, G. Bonomi, A. Donzella, A. Zenoni, G. Zumerle, N. Zurlo,

EcoMug: An Efficient COsmic MUon Generator for cosmic-ray muon applications, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Volume 1014, 2021, 165732, ISSN 0168-9002, https://doi.org/10.1016/j.nima.2021.165732.

Э Генератор космического излучения

Генератор космического излучения

Э Генератор космического излучения

	1	2	3	4	5
	пластина	пластина	пластина	пластина	пластина
Старый генератор	391953	393231	391960	393039	251628
Генератор EcoMug	14967	14748	14812	14825	26811

 $N_{\rm coбытий} = 10^6$

Старый генератор:

- + Большее число попаданий в детектор
- + Меньшее время набора статистики
- Неточный энергетический спектр мюонов
- Неточное пространственное распределение

Генератор EcoMug:

- + Высокая точность энергетического спектра мюонов
- + Правильное пространственное распределение
- + Рождение µ+ и µ-
- Большее время набора статистики
- Меньшее количество попаданий в детектор

• Результаты моделирования

При тестовая сборка (сцинтиллятор)

Сцинтиллятор ВС - 408

SiPM Onsemi MicroFC-30035-SMT

SiPM Onsemi MicroFJ-30035-TSV

Держатели WLS-волокна и крепления SiPM

П Тестовая сборка (электроника)

Регистрация космического излучения

	Количество событий	Экспозиция	Скорость счета	Скорость счета (ожидаемая)	Эффективность регистрации
Вертикальная пластина	1000	641	1.56 мюонов/с	4.6 мюонов/с	33.9 %
Горизонтальная пластина	1000	526	1.9 мюонов/с	6.6 мюонов/с	28.8 %

Выполнено:

- Проведено моделирование системы сцинтилляционных детекторов
- Выбран оптимальный генератор космического излучения
- Переработана электроника для SiPM
- Обновлена тестовая сборка

План работ:

- Сборка системы вне вакуумной камеры
- Подключение системы к общей системе сбора данных
- Набор статистики космического излучения
- Размещение системы в вакуумной камере главного детектора
- Получение экспериментальных данных

национальный исследовательский центр «КУРЧАТОВСКИЙ ИНСТИТУТ»

Петербургский институт ядерной физики 🥟 им. Б. П. Константинова

Спасибо за внимание!

 $\pm 1/2$

ргргг(вектор)(тензор)-2/300+1-1/3+1-1+1

атомный пучок $d_{nozzle} = 2 \text{ мм}$ $\vec{D}, 0.01 \Rightarrow B$ $T_{nozzle} = 65-85 \text{ K}$ $4 \cdot 10^{16} \text{ атомов/с } \text{RF}_{power} = 300 \text{ BT}$

-1/2

Поляризатор: Sextupoles + MFT + Sextupoles + MFT

0.5 м

💮 Тестовый сеанс 2019 года

Амплитудный спектр регистрации продуктов синтеза неполяризованного дейтерия с энергией 10 кэВ в тестовом сеансе 2019 года При энергии ионного пучка равной 10 кэВ и током 10 мкА, где в качестве мишени использовалась паровая мишень на основе тяжелой воды (D2O) с целью имитации источника поляризованного атомарного пучка. Были использованы 22 полупроводниковых детектора на передней, нижней и верхней плоскостях центрального 4*π*детектора. Длительность сеанса составляла порядка 200 часов.

Сечение реакции

$\sigma(\Theta, \Phi) = \sigma_0(\Theta) \{ 1 \}$	+	$\frac{3}{2} \left[A_y^{(b)}(\Theta) p_y + A_y^{(t)} q_y \right] + \frac{1}{2} \left[A_{zz}^{(b)}(\Theta) p_{zz} + A_{zz}^{(t)}(\Theta) q_{zz} \right]$
	+	$\frac{1}{6} \left[A_{xx-yy}^{(b)}(\Theta) p_{xx-yy} + A_{xx-yy}^{(t)}(\Theta) q_{xx-yy} \right]$
	+	$\frac{2}{3} \left[A_{xz}^{(b)}(\Theta) p_{xz} + A_{xz}^{(t)}(\Theta) q_{xz} \right]$
	+	$\frac{9}{4} \left[C_{y,y}(\Theta) p_y q_y + C_{x,x}(\Theta) p_x q_x + C_{x,z}(\Theta) p_x q_z \right]$
		$+C_{z,x}(\Theta)p_zq_x+C_{z,z}(\Theta)p_zq_z]$
	+	$\frac{3}{4} \left[C_{y,zz}(\Theta) p_y q_{zz} + C_{zz,y}(\Theta) p_{zz} q_y \right]$
	+	$C_{y,xz}(\Theta)p_yq_{xz} + C_{xz,y}(\Theta)p_{xz}q_y + C_{x,yz}(\Theta)p_xq_{yz}$
	+	$C_{yz,x}(\Theta)p_{yz}q_x + C_{z,yz}(\Theta)p_zq_{yz} + C_{yz,z}(\Theta)p_{yz}q_z$
	+	$\frac{1}{4} \left[C_{y,xx-yy}(\Theta) p_y q_{xx-yy} + C_{xx-yy,y}(\Theta) p_{xx-yy} q_y \right]$
		$+C_{zz,zz}(\Theta)p_{zz}q_{zz}]$
	+	$\frac{1}{3} \left[C_{zz,xz}(\Theta) p_{zz} q_{xz} + C_{xz,zz}(\Theta) p_{xz} q_{zz} \right]$
	+	$\frac{1}{12} \left[C_{zz,xx-yy}(\Theta) p_{zz} q_{xx-yy} + C_{xx-yy,zz}(\Theta) p_{xx-yy} q_{zz} \right]$
	+	$\frac{4}{9} \left[C_{xz,xz}(\Theta) p_{xz} q_{xz} + C_{yz,yz}(\Theta) p_{yz} q_{yz} \right]$
	+	$\frac{8}{9} \left[C_{xy,yz}(\Theta) p_{xy} q_{yz} + C_{yz,xy}(\Theta) p_{yz} q_{xy} \right]$
	+	$rac{16}{9}C_{xy,xy}(\Theta)p_{xy}q_{xy}$
	+	$\frac{1}{9} \left[C_{xz,xx-yy}(\Theta) p_{xz} q_{xx-yy} + C_{xx-yy,xz}(\Theta) p_{xx-yy} q_{xz} \right]$
	+	$\frac{1}{36}C_{xx-yy,xx-yy}(\Theta)p_{xx-yy}q_{xx-yy}$
	+	$\frac{1}{2} \left[C_{x,xy}(\Theta) p_x q_{xy} + C_{xy,x}(\Theta) p_{xy} q_x + C_{z,xy}(\Theta) p_z q_{xy} \right]$
		$+C_{xy,z}(\Theta)p_{xy}q_{z}]$ }

Спины обоих дейтронов совпадают: Только $p_z(q_z)$ и $p_{zz}(q_{zz}) \neq 0$ $\sigma(\Theta, \Phi) = \sigma_0(\Theta) \left\{ 1 + \frac{3}{2} \left[A_{zz}^{(b)}(\Theta) p_{zz} + A_{zz}^{(t)}(\Theta) q_{zz} \right] + \frac{9}{4} C_{z,z}(\Theta) p_z q_z + \frac{1}{4} C_{zz,zz}(\Theta) p_{zz} q_{zz} \right\}$

В случае поляризованного пучка ($p_{i,j} \neq 0, q_{i,j} = 0$): $\sigma(\Theta, \Phi) = \sigma_0(\Theta) + \{1 + 3/2 A_y(\Theta) p_y + 1/2 A_{xz}(\Theta) p_{xz} + 1/6 A_{xx-yy}(\Theta) p_{xx-zz} + 2/3 A_{zz}(\Theta) p_{zz}\}$