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Proton spin puzzle/ Spin crisis  

 
 
  
 

Proton spin 𝑺𝒑 = 1/2.  In the simplest model, proton consists of three  

quarks of different colours, spin of each quark = 1/2, so  
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SP = 1/2 

No spin problem with the proton spin description if proton consists  

of  3 quarks only  

However,  experiments on Deep-Inelastic Scattering off polarized  

protons brought a problem. At high energies, nucleons (protons) consist  

of partons, i.e. quarks and gluons 



Spin/Angular Moment conservation  relates the hadron spin  

to the parton (quarks and gluon) spins 

First experimental investigation of the nucleon spin was  

carried out by  European Muon Collaboration (EMC) in 1988 

Proton spin =1/2. Proton consists of quarks  

(quark spin = 1/2) and gluons (gluon spin = 1)   

 

Proton spin is made out of the parton spins, so it was expected that  

𝟏
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Quark helicity  

distribution 

Gluon helicity  

distribution 

However in 1988, EMC reported that  𝑺𝒒 + 𝑺𝒈  < 1/2 

This was named  

To explain  Puzzle, there were introduced additional  

contributions: Angular Orbital Moments of quarks and gluons,  
 𝑳𝒒   and  𝑳𝒈  Nevertheless  it did not  solve the problem:  

 

 

But it has not helped to solve the puzzle 

𝑺𝒒    +  𝑺𝒈 + 𝑳𝒒 + 𝑳𝒈    < 1/2 

Experimental data on proton spin at high energies  arrive from  
lepton-hadron  Deep-Inelastic Scattering (DIS)  

Angular momentum conservation: 𝑺𝒒 +  𝑺𝒈= 𝟏 𝟐   



Deep-inelastic lepton-hadron scattering 

Initial lepton 

outgoing lepton 

Initial hadron 

produced 

hadrons 

𝝁−+ 𝒉 → 𝝁−+ 𝑿 

registered unregistered 

k 

k’ 

q 

p 

Virtual photon, Z-

boson, W-boson 

Inclusive process 

𝒒 = 𝒌 − 𝒌′ 𝒒𝟐 = 𝒌 − 𝒌′ 𝟐 < 𝟎 

               Aim: probing electromagnetic structure of hadrons 

𝑸𝟐 = −𝒒𝟐  > 𝟎 



Standard parametrization of  𝑾𝒔𝒑𝒊𝒏
𝝁𝝊  

Spin-dependent structure  functions 

Each structure function depends on  the invariant energy w = 2pq 

and virtuality of the photon Q2 

𝒙 =  𝑸𝟐 𝟐𝒑𝒒, 𝟎 < 𝒙 < 𝟏  

𝒈⊥ = 𝒈𝟏 + 𝒈𝟐 

  

𝑾𝒔𝒑𝒊𝒏
𝝁𝝊= 𝒊 𝝐𝝁𝝂𝝀𝝆  𝒎𝒉𝒒𝝀/𝒑𝒒 𝑺||

𝝆 𝒈𝟏 𝒙.𝑸𝟐 + 𝑺⊥
𝝆 𝒈⊥ 𝒙.𝑸𝟐  

Longitudinal component 

of spin 

transverse component of 

spin 
Hadron mass 

𝑺||
𝝆 ≈ 𝒑𝝆 𝒎𝒉   



𝒈𝟏 ~𝝈𝑳 ↑↑  -  𝝈𝑳 ↑↓  𝒈⊥ =  𝒈𝟏 +  𝒈𝟐 ~𝝈𝑻 ↑↑  - 𝝈𝑻 ↑↓  

subscripts:   

 

L –longitudinal 

T - transverse  

At high energies, when masses are neglected,      𝑺𝑳 ⟷ 𝒉   

helicity 

Spin structure functions are asymmetries:   

Spins are 

longitudinal 

Spins are 

transverse 

 Experimental data on     Sq      and    Sg             
come from investigation of structure function g1  

of Deep-Inelastic Scattering at COMPASS and RHIC   



COMPASS is a high-energy physics experiment at the Super Proton 

Synchrotron (SPS) at CERN in Geneva, Switzerland. The purpose of 

this experiment is the study of hadron structure and hadron 

spectroscopy with high intensity muon and hadron beams.   

On February 1997 the experiment was approved conditionally 

by  CERN and the final Memorandum of Understanding was signed in 

September 1998. The spectrometer was installed in 1999 - 2000 and 

was commissioned during a technical run in 2001. Data taking started 

in summer 2002 and continued until fall 2004. After one year shutdown 

in 2005, COMPASS will resume data taking in 2006.    

Nearly 240 physicists from 11 countries and 28 institutions work in 

COMPASS 

 

Taken from wwwcompass.cern.ch 

http://user.web.cern.ch/User/Welcome.html


COMPASS 

 COmmon Muon Proton Apparatus for Structure and Spectroscopy 

Artistic view of the 60 m long COMPASS 

 two-stage spectrometer. The two  

dipole magnets are indicated in red 

 

Taken from wwwcompass.cern.ch 

http://bulletin.cern.ch/eng/articles.php?bullno=06/2006&base=art&artno=BUL-NA-2006-005
http://en.wikipedia.org/wiki/Czech_Republic
http://en.wikipedia.org/wiki/France
http://en.wikipedia.org/wiki/Germany
http://en.wikipedia.org/wiki/Israel
http://en.wikipedia.org/wiki/Italy
http://en.wikipedia.org/wiki/Japan
http://en.wikipedia.org/wiki/India
http://en.wikipedia.org/wiki/Poland
http://en.wikipedia.org/wiki/Portugal
http://en.wikipedia.org/wiki/Russia
http://www.cern.ch/
http://wwwcompass.cern.ch/Pictures/Layout-3D-1L.gif
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Aim of the RHIC experiments: to obtain  𝑺𝒒  and 𝑺𝒈      

Actually they  obtained  𝑺 𝒒  and 𝑺 𝒈      
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𝒙𝟏 = 𝟎. 𝟎𝟎𝟏  𝒙𝟐 = 𝟎. 𝟎𝟓  



𝑺𝒒 = 𝟎. 𝟏𝟓 ÷ 𝟎. 𝟐𝟎 

𝑺𝒈 = 𝟎. 𝟏𝟑 ÷ 𝟎. 𝟐𝟔 
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Recent RHIC data (2015) obtained by measuring  g1: 

knowledge of             and               at smaller x is out of the  
RHIC reach      

𝒉𝒒 𝒙  

𝟎. 𝟎𝟎𝟏 < 𝒙 < 𝟏  

𝟎. 𝟎𝟓 < 𝒙 < 𝟏  

𝟏 𝟎 

𝑺𝒒 

RHIC unknown  𝒙  

𝟏 𝟎 

𝑺𝒈 

RHIC unknown 

𝑺 𝒒 𝑺′𝒒 𝑺 𝒈 𝑺′𝒈 

 𝒙𝟏 = 𝟏𝟎−𝟑 
 𝒙𝟐 = 𝟎. 𝟎𝟓 

 𝒙  

𝑸𝟐 = 𝟏𝟎 𝑮𝒆𝑽𝟐  

𝒉𝒈 𝒙  



0.15 

𝑺𝒈 
1/2 0 

1/2 
𝑺𝒒 + 𝑺𝒈 = 𝟏 𝟐  

𝑺𝒒 

0.20 

0.26 0.13 

𝚫𝑺 𝒒 

𝚫𝑺 𝒈 

Illustration of the RHIC data: 

No overlapping of projections of         
and          𝑺 𝒒 𝑺 𝒈 

+             never = 1/2        𝑺 𝒒 𝑺 𝒈 
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𝒙𝟏 = 𝟎. 𝟎𝟎𝟏  𝒙𝟐 = 𝟎. 𝟎𝟓  

Missing contributions to the proton spin: 

They cannot be registered at RHIC, so they should be calculated. 

Available theoretical instrument is QCD but it is  a regular technical 

means at large momenta only. 
In order to describe an impact of the small momenta region, the QCD 
Factorization concept  is used. 



QCD Factorization: 

15 

q 
q 

quarks 

q q 

+ 

p p p 
p 

Pert QCD 

objects 

Non-Pert  

objects 

𝒈𝟏
(𝒒) 𝒈𝟏

(𝒈) 

𝚽𝒒  𝚽𝒈  

Distributions of partons in the 

hadrons 

𝒈𝟏 =  𝒈𝟏
𝒒𝒖𝒂𝒓𝒌  ⊗ 𝜱𝒒𝒖𝒂𝒓𝒌 + 𝒈𝟏

𝒈𝒍𝒖𝒐𝒏 ⊗ 𝜱𝒈𝒍𝒖𝒐𝒏  

are found from fits 
Calculated with Pert QCD 

gluons 

SCIENCE  ART   Being combined, produce g1 



Standard DGLAP fits for initial parton densities  

usually  defined at Q2 = 1 GeV2: 

N, a, b, c, d – free parameters,  

all of them are  positive, they are fixed from experiment,  

𝜱𝒒,𝒈 = 𝐍    𝒙−𝒂     𝟏 − 𝒙 𝒃  𝟏 + 𝒄𝒙𝒅  

The simplest type: Collinear factorization 

normalization Singular 

factor Regular terms 

Perturbative contributions: 

Non-Perturbative contributions: 

1)   NLO and NNLO DGLAP    Borsa-de Florian-Sassot-Stratmann-

Wogelsang 



2) KSPCTT approach  

Kovchegov-Sivert-Pitonyak-Tarasov-Tawaburt-Cougoulic-

Adamiak-Boussarie-Hatta- Fen Yuan-Baldonado-Melnitchouk 

The both approaches provide a good agreement with SP=1/2  

However, they are unsatisfactory from the theoretical point of view. 

Namely: 

DGLAP was suggested for the kinematic region of x ~1.  

It misses many contributions essential at x<<1 

In the first place, double-logarithmic (DL) contributions.  
This drawback is compensated by introducing ad hoc singular terms 

   𝒙−𝒂  in the DGLAP fits 

Besides,  the standard DGLAP parametrization of 𝜶𝒔 = 𝜶𝒔 𝑸𝟐   is 

incorrect at x << 1 
 

KSPCTT operates with the small-x asymptotics  both in their 
applicability region and outside it. 

Besides, they keep  𝜶𝒔 fixed and set its scale a posteriori 

 



We suggest a new approach to the proton spin problem, which is 

free of these drawbacks:  

 

We account for the total summation of DL contributions to 

g1/helicities and at the same time account for the running QCD 

coupling 
 

Advantages of our approach:  

 

When DL contributions are totally summed, the singular factors in 

the fits should be dropped.  

When  DL contributions are complemented by the DGLAP ones, we 

obtain expressions for g1/helicities valid at any x. It considerably 

reduces the number of phenomenological parameters 

 
Using the asymptotics  of g1/helicities instead of parent expressions 

at arbitrary x is unreliable, it leads to false conclusions  
 

 

 



𝑹𝒂𝒔 𝒙 = 𝟎. 𝟗  

𝟎 ≤ 𝒙 ≤ 𝒙𝟎 

Thereby we set  

Applicability region of asymptotics: 

𝒙 = 𝒙𝟎 ≈ 𝟏𝟎−𝟓 

We suggest such a criterion:  

 

the asymptotics reliably represent g1 when  

The large Q2, the smaller x0 

at Q2 = 1 GeV2 
 

i.e. the smaller the applicability region 

We will not work with asymptotics but calculate g1 in the  
Double-Logarithmic Approximation (DLA). It sums up the contributions  

most important at small x to all orders in the coupling 
 



Perturbative components of g1 

Born approximation 

q q 

p p 

𝒈𝟏
(𝒒) = 𝒆𝒒

𝟐 𝜹 𝒙 − 𝟏  

𝒈𝟏
(𝒈) = 𝟎 

Quark electric charge 

𝒙 =  𝑸𝟐 𝟐𝒑𝒒  

Invariant 

energy 

Photon 

virtuality 

 higher loop calculations are necessary  

The contributions most important at small x are  
Doubly-Logarithmic (DL)  

We are interested in x <0.05 

where Born fails  

𝒈𝟏 =  𝒈𝟏
𝒒𝒖𝒂𝒓𝒌  ⊗ 𝜱𝒒𝒖𝒂𝒓𝒌 + 𝒈𝟏

𝒈𝒍𝒖𝒐𝒏 ⊗ 𝜱𝒈𝒍𝒖𝒐𝒏  



Standard instrument to calculate g1 or helicities beyond Born is 

DGLAP Dokshitzer-Gribov-Lipatov-Altarelli-Parisi 

 

DGLAP operates with the coefficient functions calculated in first and 

second orders in the coupling and does not account for total 

summation of logarithms of x to all orders in the coupling  
 

 

We account for total resummation of DL contributions and in addition 

account for the running coupling effects 

𝒈𝟏
(𝒒) = 𝜹 𝒙 − 𝟏 + 𝒄𝟏 𝜶𝒔𝒍𝒏 𝟏 𝒙 + 𝒄𝟐 𝜶𝒔

𝟐𝒍𝒏𝟑 𝟏 𝒙 + ⋯  

𝒈𝟏
(𝒈) = 𝒄′𝟏 𝜶𝒔𝒍𝒏 𝟏 𝒙 + 𝒄′𝟐 𝜶𝒔

𝟐𝒍𝒏𝟑 𝟏 𝒙 + ⋯  



q q q 

p 

p p 

𝒈𝟏
𝑵𝑺 𝒈𝟏

(𝒒) 𝒈𝟏
(𝒈) 

Nonsinglet Singlet  Singlet  

Mixing quark and gluon rungs 



Both singlet and non-singlet  𝒈𝟏   were  calculated in DLA + accounting for  

 running coupling effects.  The instrument to calculate them were  

Infra-Red Evolution Equations 

This method was suggested by L.N. Lipatov  

It stems  from the observation that the bremsstrahlung photon    

with minimal transverse momentum  (the softest photon) can be factorized  

out of the radiative amplitudes  with DL accuracy  V.N. Gribov 

 

Similarly, DL contributions of softest virtual quarks/gluons can be factorized  

DL contributions of virtual gluons are infrared (IR)-divergent. When quark 

masses are neglected, DL contributions from soft quarks also become IR-

divergent.  In order to regulate them, one can introduce an IR cut-off    𝝁   

 

It is convenient to introduce 𝝁  in the transverse momentum space, which  

makes it possible to use the factorization.  

 

After factorizing the softest quarks and gluons, their transverse momenta act 

as a new IR cut-off, instead of 𝝁 , for integrating over momenta of other virtual 

partons.  

 



Value of 𝝁 obeys the restriction 𝝁 ≪ 𝚲𝑸𝑪𝑫 in order to allow applying 

Perturbative QCD, otherwise it is arbitrary. This makes possible to 

evolve the objects under consideration with respect to 𝝁  

 
It is the reason why the method was named IREE.  (M.Krawczyk) 

The method proved to be effective and simple instrument for 

calculations in Double-Logarithmic Approximation (DLA), i.e. when 
contributions  

 
                                                        𝒏 = 𝟏, 𝟐,… .  

are accounted to all orders in 𝜶𝒔
 

 

At the beginning,  the IREE method operated with fixed 𝜶𝒔
   

but later the running coupling effects were incorporated (Ermolaev-
Greco-Troyan) 

~𝜶𝒔
𝒏𝒍𝒏𝟐𝒏 𝟏 𝒙  



𝒈𝟏 𝒙,𝑸𝟐 =  
𝒅 𝝎

𝟐 𝝅 𝒊
 𝒙−𝝎 𝑪(𝝎)𝒆

𝒉 𝝎 𝒍𝒏
𝑸𝟐

𝝁𝟐
𝝓(𝝎)

𝒊 ∞

−𝒊∞

 

Coefficient function 

Anomalous dimension 

Initial quark distribution 

Expression for the singlet is more involved. It includes mixing of quark 

and gluon rungs, and initial quark and gluon distributions 

Non-singlet 

Both coefficient functions and anomalous dimensions are  

calculated in DLA, i.e. each of them sums DL contributions to all  
orders in the coupling 



First, there was  calculation of                in  DLA under the ladder 

approximation                                                                                                                                                                                                     

                                                                  Ermolaev-Manaenkov-Ryskin (1995)  

 

Then contributions of non-ladder graphs were included  

                                                                Bartels-Ermolaev-Ryskin (1996) 

 

  Then                  was calculated  

                                                                Bartels-Ermolaev-Ryskin (1996)   

   
Accounting for running 𝜶𝒔 effects,  

Single-logarithmic correction,  

Expressions for g1 at arbitrary  x and Q2 ,  

Explaining the COMPASS experiments,   

Accounting for 1/Q2 -corrections 

                                                         Ermolaev-Greco-Troyan (1999-2008) 

𝒈𝟏
𝑺   

𝒈𝟏
𝑵𝑺   

Results on g1 in DLA + 



                                Asymptotic scaling 

                                                                       

 
Any of  g1

NS,  g1
S,  F1

NS,  F1
S calculated in DLA asymptotically behaves as   

𝒇 ~𝒙−𝜟 𝑸𝟐 𝝁𝟐 
𝜟/𝟐

=
𝑸𝟐

𝒙𝟐 
∆ 𝟐 

 

However,  their intercepts are different  

𝒈𝟏~𝒙−𝜟 𝑸𝟐 𝝁𝟐 
𝜟/𝟐

= 𝑸𝟐 𝒙𝟐 
𝚫/𝟐

 

 intercept 

The small-x asymptotics of g1 was found by purely mathematical means, with 

Saddle-Point method. All of them proved to be of the Regge type  



𝜟𝑵𝑺
(𝒍𝒂𝒅𝒅𝒆𝒓) =

𝟐𝜶𝒔 𝑪𝑭

𝝅

𝟏/𝟐

 

𝜟𝑵𝑺 ≈
𝟐𝜶𝒔 𝑪𝑭

𝝅

𝟏/𝟐
𝟏

𝟐
+

𝟏

𝟐
 𝟏 + 𝟒 𝑵𝟐 − 𝟏 

𝟏/𝟐

 

≈
𝟐𝜶𝒔 𝑪𝑭

𝝅

𝟏/𝟐

𝟏 + 𝟐 𝑵𝟐  

𝜟𝑺 = 𝒛𝒉   
𝜶𝒔 𝑵

𝟐𝝅

𝟏/𝟐

 

𝑪𝑭= 
𝑵𝟐 −𝟏

𝟐 𝑵
= 

𝟒

𝟑
 

𝑵 = 𝟑 

𝒛𝒉 = 𝟑. 𝟒𝟓 

Found with numerical calculation 

Later the running coupling effects were accounted for, so the  

the intercepts became just numbers, without 𝜶𝒔  

                                                                Ermolaev-Greco-Troyan     

𝜟𝑵𝑺 = 𝟎. 𝟒𝟐 𝜟𝑺 = 𝟎. 𝟖𝟔 

Ermolaev-Manaenkov-Ryskin 

Bartels-Ermolaev-Ryskin 

 

 𝜶𝒔 is fixed,  

its scale is set  
a posteriori 



CRITICISM and ALTERNATIVE CALCULATIONS of  INTERCEPTS of g1  

Interest to theoretical investigation of g1 increased in 2015  when  

   Kovchegov-Pitonyak-Sievert 2015 (KPS) 

 investigated small-x asymptotics of helicity in DLA with fixed   
  𝜶𝒔  in the ladder approximation.  Their approach differ from ours 

First they confirmed our previous  

result on Intercept  of  g1 in the ladder approximation 

                                                          Ermolaev-Manaenkov-Ryskin, 1995 
 

 

 

Next year KPS  considered asymptotics of the singlet  g1  

and arrived at a huge disagreement  with the result of 

                                                         Bartels- Ermolaev –Ryskin (BER), 1996 



 

                                 𝒛 𝒉 = 2.45    vs        𝒛𝒉 = 3.66 

∆𝒈𝒍𝒖𝒐𝒏 = 𝒛𝒉 𝜶𝒔𝑵 𝟐𝝅 𝟏/𝟐 

∆ 𝒈𝒍𝒖𝒐𝒏 = 𝒛 𝒉 𝜶𝒔𝑵 𝟐𝝅 𝟏/𝟐 

NAMELY, They considered purely gluon DL contributions and  

represented their result  on the intercept as follows:  

Strong discrepancy  

Publishing such  huge discrepancy  provoked an extensive interest in the 

matter, so  many authors contributed to this issue    

BER  

KPS  

BER  KPS  



Kovchegov, Pitonyak, Sievert, Borden, Adamiak,  Yossathom, Tawabutr,  

Santiago, Tarasov, Venugoplan, Chirilli, Gougoulic, Nayan Mani Nath,  

Jayanta Kumar Sarma, Zhou, Boussarie, Hatta, Yuan .. 

 

These authors also studied small- x evolution of helicity, using the   

JIMWLK -approach  

Jalilian-Marian, Iancu, McLerran, Weigert,,Leonidov, Kovner 

 

 

However, JIMWLK  originally was designed for evolution of unpolarized  

objects , so 

Kovchegov- Pitonyak - Sievert  

generalized it  to study the helicity evolution  

and other authors also developed various modifications of JIMWLK trying to  

obtain most accurate estimates of 𝒛𝒉  

 

This polemics continued till 2023 



KPSCTT 2023 

As a results of this polemics of 2016- 2023, the first estimate of 2016  

(called KPS-evolution) 

Kovchegov- Pitonyak - Sievert  
 

𝒛𝒉 = 2.45   

 

 

was drastically corrected by  

Kovchegov- Pitonyak - Sievert – Cougoulic- Tarasov- Tawabutr 
 

 when they constructed KSPTT evolution equation instead of KPS.  Their  

estimate of 2023 is  

 

𝒛𝒉 = 3.6                                             coincides with BER 1996    

KPS 2016 



KPSCTT 2023 

However, recently accuracy of calculations in the framework of KPSCTT – 

evolution was increased, so same authors (e.g. Tawabutr)  have  

concluded that there still remains a small disagreement 

 

                                              The  newest estimate :  

 𝒛 𝒉 = 3.661    vs        𝒛𝒉 = 3.664 

BER 1996 

NB it is important to remember that KPSCTT provides asymptotics only whereas 

our approach first provides explicit expressions for g1 in DLA and its 

asymptotics are obtained with Saddle-Point Method from  such expressions  



𝟏 𝟎 

RHIC calculation  𝒙  

𝟏 𝟎 

RHIC calculation 

𝑺 𝒒 𝑺 𝒈 

 𝒙𝟏 = 𝟏𝟎−𝟑  𝒙𝟐 = 𝟎. 𝟎𝟓 

asymptotic expressions for g1 were used to  calculate  𝑺′𝒒 and 𝑺′𝒈 

                Cougoulic-Kovchegov-Manley-Tarasov-Tawabutr 2023; 

Boussarie- Hatta – Yuan, 2019; Kovchegov- Manley, 2023 

 

𝑺′𝒒 =  
𝟏

𝟐
 𝒅𝒙 𝒉𝒒 𝒙

𝒙𝟏

𝟎

 𝑺′𝒈 =  𝒅𝒙 𝒉𝒒 𝒙

𝒙𝟐

𝟎

 

=1/2 (𝑺′𝒒+𝑺 𝒒) + (𝑺′𝒈 + 𝑺 𝒈)  Supposedly: 𝑺𝒒 + 𝑺𝒈 = 



In more detail: The asymptotic expressions for g1 were applied to  
calculate  𝑺′𝒒 and 𝑺′𝒒 

                Cougoulic-Kovchegov-Manley-Tarasov-Tawabutr, 2023 

             Adamiak-Kovchegov-Tawabutr 2023 

It turned out that  𝑺𝒒 + 𝑺𝒈 < 𝟏/𝟐 

 
    In order to  explain the spin crisis, Angular Orbital Momentum 
contribution  was added  to   𝑺𝒒,𝑺𝒈   

Boussarie- Hatta – Yuan, 2019; Kovchegov- Manley, 2023 

in hope to obtain                    

=
𝟏

𝟐
  𝑺𝒒 + 𝑺𝒈 + (𝑳𝒒  + 𝑳𝒈)    

All the articles describe 𝑳𝒒 , 𝑳𝒈  by the same asymptotic formulae 

as                      however the derivation is not clearly presented and 

the explicit  estimates of                   are absent 

Moreover, any asymptotic expressions should not have been used 

in these regions 

 
 

𝑺𝒒 , 𝑺𝒈 
𝑺𝒒 , 𝑺𝒈 



Applicability region of Regge asymptotics 

                                                                      Ermolaev-Greco-Troyan      
 

Regge asymptotics are given by simple and elegant expressions. 

However the applicability regions of the asymptotics are poorly known 

We introduce    𝑹𝒂𝒔 𝒙,𝑸𝟐 = 𝒈 𝟏 𝒙,𝑸𝟐 𝒈𝟏 𝒙,𝑸𝟐  

Asymptotics reliably represent g1 when    Ras  is close to 1.  
Numerical analysis at Q2 = 1 GeV2 yields                               

Appicability region for asymptotics 

Asymptotics  

and numerically study its x-dependence at fixed Q2  

x < 𝒙𝟎 = 𝟏𝟎−𝟓 

𝒙 = 𝟏𝟎−𝟒  𝑹𝑨𝑺 ≈ 𝟎. 𝟕 

𝑥 = 𝟏𝟎−𝟓  𝑹𝑨𝑺 ≈ 𝟎. 𝟗 

𝒙 = 𝟏𝟎−𝟑  𝑹𝑨𝑺 ≈ 𝟎. 𝟓 

The more Q2 , the less x0 



𝟏 𝟎 

RHIC calculation  𝒙  

𝟏 𝟎 

RHIC calculation 

𝑺 𝒒 𝑺 𝒈 

 𝒙𝟏 = 𝟏𝟎−𝟑  𝒙𝟐 = 𝟎. 𝟎𝟓 

x1 and x2 are outside the applicability region of asymptotic 

expressions for g1 so, the asymptotics should not be used to calculate   
𝑺′𝒒 and 𝑺′𝒈  

              

𝑺′𝒒 =  
𝟏

𝟐
 𝒅𝒙 𝒉𝒒 𝒙

𝒙𝟏

𝟎

 𝑺′𝒈 =  𝒅𝒙 𝒉𝒒 𝒙

𝒙𝟐

𝟎

 

Objects to calculate: 



Alternatively, the quark and gluon spin contributions  

Were calculated with using NLO and NNLO DGLAP as  

the perturbative methods 

    Borsa-de Florian-Sassot-Stratmann-Wogelsang 

Extending it to the small x requires singular fits for initial parton  

densities usually fixed at Q2=1 GeV2:  

N, a, b, c, d – free parameters, they are different for quarks and  

gluons and are fixed from experiment 
 

NB  in both KPSCTT and DGLAP the presence of  contributions from  

Angular Orbital Momenta was mandatory 

𝜱𝒒 = 𝐍    𝒙−𝒂     𝟏 − 𝒙 𝒃  𝟏 + 𝒄𝒙𝒅  

Obvious drawback: DGLAP was originally suggested for operating  

at x ~1, It misses logs (1/x) which are important at small x 



𝒉𝒒 = 𝒇𝒒𝒒 ⊗ 𝚽𝒒 + 𝒇𝒒𝒈 ⊗ 𝚽𝒈 𝒉𝒈 = 𝒇𝒈𝒒 ⊗ 𝚽𝒒 + 𝒇𝒈𝒈 ⊗ 𝚽𝒈 

In contrast, we do not use the asymptotics and calculate            and          

in Double-Logarithmic Approximation (DLA) 

QCD Factorization:    

𝒉𝒒   𝒉𝒈   

parton distributions 

Perturbative components 

Each  intermediate state consists of 2 partons :  

Single Parton Collision Approximation 

+ 

𝚽𝒈  

𝒇𝒒𝒈   

𝚽𝒈  

+ 
𝒇𝒒𝒒   𝒇𝒈𝒒   

𝚽𝒒  𝚽𝒒  

+ 
𝒇𝒈𝒈   

QCD Factorization for  𝒉𝒒 𝒙    QCD Factorization for  𝒉𝒈 𝒙    



We choose Collinear Factorization.  
The standard fits for the parton densities are: 

𝜱𝒒,𝒈 = 𝑵 𝒙−𝒂  𝟏 − 𝒙 𝒃 𝟏 − 𝒄𝒙𝒅  

As a result, at small x 

Mimics resummation of DL and  

should be dropped when the 

resummation is taken into account 

𝜱𝒒 ≈ 𝑵𝒒 𝜱𝒈 ≈ 𝑵𝒈 

Unknown and cannot be fixed 

from theoretical grounds 

Perturbative components are calculated in DLA.  

 

Non-Perturbative components are phenomenological objects. They are 

different for different forms  of QCD Factorization  

Can be dropped when DLA and DGLAP are combined, 

especially at small x 

𝑵, 𝒂, 𝒃, 𝒄, 𝒅 > 𝟎 



Solving this system, express     

𝑵𝒒 𝑵𝒈 on  𝑺 𝒒 and   𝑺 𝒈    respectively  

𝑺 𝒒 =
𝟏

𝟐
 𝑵𝒒  𝒅𝒙 𝒇𝒒𝒒 𝒙 + 𝑵𝒈

𝟏

𝟐
 𝒅𝒙 𝒇𝒒𝒈 𝒙  

𝟏

𝒙𝟏

𝟏

𝒙𝟏

 

𝑺 𝒈 = 𝑵𝒒  𝒅𝒙 𝒇𝒈𝒒 𝒙 + 𝑵𝒈  𝒅𝒙 𝒇𝒈𝒈 𝒙  

𝟏

𝒙𝟐

𝟏

𝒙𝟐

 

 algebraic  

equations for  𝑵𝒒,𝒈 
 

Fix         and          from the RHIC data  

𝑵𝒒,𝒈 through   𝑺 𝒒,𝒈 



𝑺′𝒒 =
𝟏

𝟐
 𝑵𝒒  𝒅𝒙 𝒇𝒒𝒒 𝒙 + 𝑵𝒈 

𝟏

𝟐
 𝒅𝒙 𝒇𝒒𝒈 𝒙  

𝒙𝟏

𝟎

𝒙𝟏

𝟎

 

𝑺′𝒈 = 𝑵𝒒  𝒅𝒙 𝒇𝒈𝒒 𝒙 + 𝑵𝒈  𝒅𝒙 𝒇𝒈𝒈 𝒙  

𝒙𝟐

𝟎

𝒙𝟐

𝟎

 

All terms in the  

r.h.s.,  are  known, so it  

is possible to perform the  

integrations 
 

This is program of straightforward calculation of parton contributions to the 

nucleon spin. However, its  implementation is technically difficult because  

exact expressions    for      𝒇𝒊𝒌 𝒙   are quite complicated 

 

Instead, we use an approximation for them to obtain a tentative solution to 

the proton spin puzzle 

STEP 1 
Main contribution comes from the purely gluon amplitude 𝒇𝒈𝒈, so   

consider it only and neglect   contributions of virtual quarks                                                                              



Then obtain  

The integral is expressed through the Modified Bessel Function 𝑰𝟏: 

𝒇𝒈𝒈 𝒙 = 𝑰𝒎 
𝒅 𝝎

𝟐 𝝅 𝒊
 𝒙−𝝎𝑭 𝝎

𝒊 ∞

−𝒊 ∞

 𝑭 𝝎 = 𝟒𝝅𝟐 𝝎𝟐 − 𝒂 where 

And the Imaginary part:  

𝒂 = 𝟒𝜶𝒔𝑵/𝝅 

𝑴𝒈𝒈 = −𝟒 𝝅
𝒂

𝝃
𝑰𝟏 𝝃 𝒂  

𝑰𝒎 𝑴𝒈𝒈 = 𝟒 𝝅𝟐 
𝒅

𝒅 𝝃

𝒂

𝝃
𝑰𝟏 𝝃 𝒂  

Expression for helicity when only gluons 

accounted  for 

Small-x asymptotics is of the Regge type:  

𝑰𝒎 𝑴𝒈𝒈 ~𝟒 𝝅𝟐 

𝝃 = 𝒍𝒏 𝟏/𝒙  with  

𝒂

𝝃𝟑/𝟐
𝒆𝝃 𝒂~

𝒂

𝝃𝟑/𝟐
𝒙− 𝒂 intercept 

and  

Mellin transform 



The genuine intercepts of the helicities and  𝒈𝟏    are known in DLA.  

They include both gluon and quark contributions 
                                                                            Ermolaev-Greco-Troyan   

𝝎𝟎 = 𝟎. 𝟖𝟔 

Perfectly agrees with the estimate  

 

 

obtained by fitting HERA results 

Kochelev-Lipka-Nowak-Vento-Vinnikov 

 

𝝎𝟎 = 𝟎. 𝟖𝟖 ± 𝟎. 𝟏𝟒 

STEP 2 

Replace  the purely gluonic intercept         by  the genuine intercept              

It corresponds to accounting  for  contributions of both virtual quarks and 

gluons.   Therefore, we get a simple interpolation formula       

𝝎𝟎 a 

Both virtual quarks and gluons 

contribute 



𝒉𝒒= 𝑪𝒒  𝑰𝟐 𝒛

𝒛
 𝒉𝒈= 𝑪𝒈  

𝑰𝟐 𝒛

𝒛
 z= 𝝎𝟎𝒍𝒏 𝟏 𝒙  with  

 RHIC data                                                   

Unknown, include non-

perturbative contributions 

𝑺 𝒒 =
𝟏

𝟐
𝑪𝒒𝑨𝒒 

𝑨𝒒 =  𝒅𝒙
𝟏

𝒙𝟏

𝑰𝟐 𝒛

𝒛
 𝑨𝒈 =  𝒅𝒙

𝟏

𝒙𝟐

𝑰𝟐 𝒛

𝒛
 = 𝟎. 𝟏𝟑𝟖 = 𝟎. 𝟖𝟕𝟒 

𝑺 𝒒 = 𝟎. 𝟏𝟓 ÷ 𝟎. 𝟐𝟎  𝑺 𝒈 = 𝟎. 𝟏𝟑 ÷ 𝟎. 𝟐𝟔  

So, we obtain approximate expressions for the quark and gluon helicities 

Fix them, using the RHIC data  

 𝑺 𝒈 = 𝑪𝒈𝑨𝒈 



𝑺𝒒 = 𝑺 𝒒 + 𝑺′𝒒 = 𝑺 𝒒 𝟏 + 𝑩𝒒 𝑨𝒒  

𝑺𝒈 = 𝑺 𝒈 + 𝑺′𝒈 = 𝑺 𝒈 𝟏 + 𝑩𝒈 𝑨𝒈  

𝑩𝒒 =  𝒅𝒙
𝒙𝟏

𝟎

𝑰𝟐 𝒛

𝒛
  𝑩𝒈=  𝒅𝒙

𝒙𝟐

𝟎

𝑰𝟐 𝒛

𝒛
 

𝑺′𝒒 =
𝟏

𝟐
𝑪𝒒𝑩𝒒 

are known, so we can calculate    𝑺′𝒒  and  𝑺′𝒈  

where 

= 𝟎. 𝟎𝟐𝟒𝟑 = 𝟎. 𝟎𝟕𝟒𝟕 

Obtain  

𝟎. 𝟏𝟖 ≤ 𝑺𝒒 ≤0.24 𝟎. 𝟐𝟒 ≤ 𝑺𝒈 ≤0.72 

𝟎. 𝟒𝟐 ≤  𝑺𝑷  ≤ 𝟎. 𝟕𝟐 

𝑺′𝒈 = 𝑪𝒈𝑩𝒈 

𝑪𝒒,𝒈 

= 𝑺 𝒒 𝟏 + 𝟎. 𝟏𝟖  

= 𝑺 𝒈 𝟏 + 𝟎. 𝟖𝟓  



0.15 

𝑺𝒈 
1/2 0 

1/2 
𝑺𝒒 + 𝑺𝒈 = 𝟏 𝟐  

𝑺𝒒 

0.20 

0.26 0.13 

𝚫𝑺 𝒒 

𝚫𝑺 𝒈 

Once more the RHIC data: 

No overlapping of projections of         
and          𝑺 𝒒 𝑺 𝒈 

+             never = 1/2        𝑺 𝒒 𝑺 𝒈 



𝑺𝒒 + 𝑺𝒈 = 𝟏 𝟐  

Overlap of the projections of         
and          

+             = 1/2        𝑺𝒒 𝑺𝒈 

𝑺𝒈 

1/2 

0 

1/2 

𝑺𝒒 

0.18 

0.24 
𝚫𝑺𝒒 

𝚫𝑺𝒈 

0.18 

∆𝑺𝒒 ∆𝑺𝒈 

0.44 0.26 0.32 

RHIC: Q2 = 10 GeV2  

Impact of   Q2 – dependence on the spin problem  is very weak 



CONCLUSIONS 

Using DLA for calculation of the parton contributions 𝑺𝒒  and 𝑺𝒈 leads to 

perfect agreement with the value 1/2 of the proton spin.  

 

In contrast to the preceding studies, we do not use asymptotics for the parton 

contributions because the asymptotics should not have been used  

 outside their applicability region x < x0 

Neither we use DGLAP because there is no theoretical grounds to apply it at 

small x; all success of DGLAP at small x heavily depends on the fits for the 

initial parton distributions 

 

On the contrary, DLA contributions are the most important, leading ones at 

small x.  

In order to simplify calculations, we start with accounting for  the gluon 

contribution to the parton helicities and then implicitly add quark 

contributions through  the intercept value. Non-perturbative contributions to 

the helicities cannot be calculated with QCD methods, so we fix them with  

using the RHIC data. As a result, the sum of the parton helicities in DLA  proved 

to be in agreement with the value  

 

Including into consideration  Orbital Angular Momenta of quarks and gluons 

is not crucial for solving the Proton Spin Puzzle but we find it interesting and 

plan to do it in the future  


