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Introduction
• Consider a series of detectors measuring the coordinates of a track.

• Measurement of only one coordinate is considered.

• Tests with one track in a time, assume detectors are 100%-efficient, no noise ⇒

one hit per plane, no need of combinatorial track recognition, reconstruction etc.

• Needed resolutions of detectors with the least possible number of assumptions.
No assumption of layers identity. Why unwanted?

• Obvious differences in design, unintended (unknown) microscopic differences, different
electronic interference in external and internal layers.

• Detector studies.
• Optimization of detector performance.

• If individual resolutions cannot be found, how about their average (squared
average)?

• No reference detectors. True track coordinates and inclination angles unknown.

• The measurements of each track in different detectors (in “layers”, in “detecting
layers”) can be fitted by a track model and residuals can be obtained.

• Tracks are straight here.

• Distributions of residuals are functions of distributions of errors.
Variances of residuals are functions of variances of errors.
How to obtain the latter from the former?

• If there are very many layers, the uncertainties of tracks may be negligible.
Then one can equate the layer resolution to residual
(most likely to the “exclusive” one).
Here the case of a few layers is considered.
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Introduction, what is known

• The assumption of identical layer resolu-
tion, only the proportionality coefficient
is needed:
G. Charpak, et al., NIM 167(1979)455,
F. Piuz, et al., NIM 196(1982)451,
A. Korytov, et al, NIM A 338(1994)375,
and many others.

Rz =
z1+z3

2
− z2 + misaligment ⇒

“fwhm” of residuals is 2.36σ
√

3/2. (F. Piuz et al, 1982)
Without a proof: the error propagation rules ⇒

V (zi ) 6= 0, corr(zi , zj ) 6= 0.

• The method of geometric
mean: R.K. Carnegie et al,
NIM A 538(2005)372,
quotes:
(Also D.C. Arogancia et al,
NIM A 602(2009)403)
Weights are inverse
layer variances,
which are unknown.

• Actually, useful only as an approximation for very many layers (weights are
unimportant) or for equal layer resolutions (weights are canceled).
MC tests in Ref. [T. Alexopoulos et al., JINST, 9 (2014) P01003]:
“The geometric mean method produces accurate results when the test and
reference detectors have the same characteristics.”
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Introduction, what is known (2)

• The use of the correction factors “cal-
culated from diagonal elements of “Hat”
matrix” [I. A. Golutvin et al., Physics of
Part. Nucl. Let., 7(2010) 355].
The “Hat” matrix is from [A.C. Rencher et al., Linear Models in Statistics, 2008,
page 228].

In Rencher notation: y = Xβ + ǫ, ǫ = σ2I, ǫ̂ = y − X β̂, β̂ = (X′X)−1X′y,

ŷ = Xβ̂ = X(X′X)−1X′ = Hy, ǫ̂ = (I− H)y = (I− H)ǫ.
The resolutions are assumed identical (although can be calculated separately).

• Claim of reconstructing 4 resolutions:
J. Bortfeldt et al., IEEE Trans. Nucl. Sci. 59 (2012) 1252.
J. Bortfeldt, Springer Theses, 2015;
Not reproduced.

• Obtaining resolution from sum of residuals (with assumption of identical layers):
Unbiased estimator ⇒ can be averaged by many tracks.

σ2 =
Q2
min

N−r
[F. James, Statistical Methods..., 2006, Section 8.4.1, page 185],

[A.C. Rencher et al., Linear Models in Statistics, 2008, page 131] ,
[Kendall et al. Section 19.9].
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Main notations

Example of 4-layer detector
(like Cathode Strip Chamber)

−1−2 0 1
1 2 3 4

2

41,2,3l l1,2,3,4 4

1,2l

4

4

zzzzz

(   )z
  (   )z

     (   )z

hit position,    x

x

N is the number of layers (in the plot N = 4).
zi are positions of detecting layers.
xi , i = 1, 2, 3, 4 are measured coordinates of hits.
xt,i are true positions of hits.
ǫi are errors of measurements: xi = xt,i + ǫi .
l1,2...(z) is the position of the straight line fitted
by layers 1, 2... at z.
ri are residuals xi − l1,2...(zi ).
E(ξ) is the expectation of any value ξ
(which can be xi , ǫi , etc.).
σ(ξ) is the standard deviation of any value ξ.
V (ξ) = σ(ξ)2 is the variance of any value ξ.
cov(ξ1, ξ2) = E [(ξ1 − E(ξ1))(ξ2 − E(ξ2))] =
= corr(ξ1, ξ2)σ(ξ1)σ(ξ2) is the covariance and
the correlation.
ξ, E(ξ), σ(ξ), V (ξ) are vectors with N components.

No systematic shifts and no electric cross talks between layers =>
• the expectation E(ǫi ) = 0,
• the correlations corr(ǫi , ǫj ) = 0 ,

But xt,i are correlated! => xi are correlated as well!
Error propagation rules (informal notation):

• E
(∑N

i aiξi
)

=
∑N

i aiE(ξi ),

• V
(∑N

i aiξi
)

=
∑N

i a2i V (ξi ) + 2
∑N

i

∑N
j=i+1 aiaj cov(ξi , ξj ),

• cov
(∑N

i aiξi ,
∑N

j bjξj
)

=
∑N

i ai
∑N

j bj cov(ξi , ξj ).
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The straight line fit

The straight line: l(x , zi ) = b(x) + a(x)z.

Find the parameters by minimization of M =
∑N

i=1 wi

(

xi − l(x , zi )
)2
, wi is the weight.

The optimal line: l̂(x , zi ) = b̂(x) + â(x)z.

Denote s =
∑N

i=1 wi , x =
∑N

i=1 wixi/s, z =
∑N

i=1 wizi/s, xz =
∑N

i=1 wixizi/s,

z2 =
∑N

i=1 wiz
2
i /s, D(z) = z2 − z2.

Minimization of M results in

â(x) =
xz − x z

D(z)
, b̂(x) = x − az =

xz2 − xz z

D(z)
.

These formulas can be found in many sources, for example,
[V. K. Grishin et al., Math. Threatment and Interp. of Phys. Exper., 1988]

This is the special case of linear method of least squares or linear regression:
x(z) =

∑N
j=1 aj fj (z), or x = Fa, where:

F =







f1(z1) f2(z1) ... fk (z1)
f1(z2) f2(z2) ... fk (z2)
... ... ... ...

f1(zN ) f2(zN ) ... fk (zN )






, W =







w1 0 ... 0
0 w2 ... 0
... ... ... ...

0 0 ... wN






,

â = (F
⊺
WF )

−1
F

⊺
W x.

In out case f1(z) = 1, f2(z) = z .
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Residuals
Distribution of residuals for each layer i : ri = xi − l̂(x , zi ).
Zero expectation, because otherwise better b̂(x) exists.

Its variance V (ri ) = V (xi − l̂(x , zi )) depends on known w and unknown ǫ and
unknown xt. Application of the error propagation rules is useless.
ri is a linear combination of components of the vector x :
ri (x) = xi − l̂(x , zi ) =

∑N
j=1 uijxj , where uij are constants that depend on w and z ,

but do not depend on x .
The residual calculated with true xt should be zero. Therefore, by construction:

ri (xt) = xt,i − l(xt, zi ) =
N
∑

j=1

uijxt,j = 0 .

Substituting xi = xt,i + ǫi into ri (x) we obtain

ri (x) =

N
∑

j=1

uij (xt,j + ǫj ) =

N
∑

j=1

uijxt,j +

N
∑

j=1

uij ǫj =

N
∑

j=1

uij ǫj = ǫi − l(ǫ, zi ).

Cf. quotation from Rencher, slide 5 (there it is without the weight matrix).

Conclusion: in any residual as a function of x , we can substitute x by ǫ.
After that we can apply error propagation rules, taking into account cov(ǫi , ǫj ) = 0:

V (ri ) =
N
∑

j=1

u2ijV (ǫj ) =
N
∑

j=1

hijV (ǫj ), cov(ri , rj ) =
N
∑

k=1

uikujkV (ǫk )

We can draw different lines with different wi 6= 0 for the same layer, but this does not seem to give

any advantage. The trivial choice wi = 0 ∨ wi = 1 is enough. Covariances do not give additional

information. The matrix H consists of elements hij :

V (r) = HV (ǫ) ⇒ V (ǫ) = H−1V (r) .
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Corrections for multiple scattering and
for longitudinal fluctuations of ionization

Suppose that

a) The multiple scattering occurs only in the planes of layers;

b) There is no lateral shift of the trajectory;

c) The standard deviation of the scattering angle φi , denoted by σ(φ), in any single
layer i is so low that tanσ(φi ) ≈ σ(φi );

d) The inclination of tracks with respect to the detector plane is so low that σ(φi )
does not significantly depend on it.

The addition caused by scattering in the layer k = j + 1 for residual in the layer i is
∑

m≥k

σ2(φm)(zi − zm)2. If k = j + 2 and if the scattering occurs also in the

intermediate layer j + 1, the addition is σ2(φj+1)(zi − zj+1) +
∑

m≥k

σ2(φm)(zi − zm)2.

Generalization for continuous multiple scattering and for inclined trajectories is
possible.
In order to obtain clean

∑N
j=1 u

2
ijV (ǫj ), these additions should be subtracted from

experimentally found V (ri ).
Similar addition for longitudinal fluctuations of ionization can be
∑N

j=1 u
2
ij

1
Ntracks

∑

all tracks

(σlf,j tan (θtrack))
2, where σlf,i is the standard deviation for

layer i per unity length of projection of the segment of track inside the sensitive
volume to x-axis.
One can take into account many other effects in similar way.
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Shapes of residual distributions

Any linear combination of Normally distributed random numbers is also a Normal
distribution with the variance which is also a linear combination of variances with
squared coefficients.

Assume that each ǫi is distributed by a Gaussian G(ǫi , 0, σi )) =
1√
2πσ

exp
(

− 1
2

ǫ
2
i

σ
2
i

)

,

Then ri is distributed according to G(ri , 0,
∑N

j=1 u
2
ijσ

2
i ).

Let ǫi be distributed by a sum of Gaussians
∑

k ρikG(ǫi , 0, σik ),
where the sum of weights

∑

k ρik = 1. The variance of resulting ri will be a sum of all
possible combinations of variances of N Gaussians:

V (ri ) =
∑

k1

ρ1,k1

∑

k2

ρ2,k2 ...
∑

kN

ρN,kN

N
∑

j=1

u2ijσ
2
jkj

.
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Geometric means, inclusive and exclusive residuals
Consider residual for layer i obtained with the line fitted
by all N layers (including i , “inclusive”) and
by N − 1 layers excluding layer i (“exclusive”).
Weights wi are identical for inclusive and exclusive cases (except for layer i ; they can
differ for different layers).
Following [R.K. Carnegie, et al, NIM A 538(2005)372] choose z such that zi = 0.
Denote the non-normalized weighted average of any value vi by two bars: v =

∑

i

wivi .

Therefore, the “ordinary” average v = v/s. Also let
∑

k 6=i

wk = s
(ex)
i

. Then:

(

s
(ex)
i

)2
D

(ex)
i

(z) = s
(ex)
i

z2 − z
2
, s2D(z) = sz2 − z

2
.

s2D(z) =
(

s
(ex)
i

)2
D

(ex)
i

(z) + wiz
2
.

ri (x) = xi − bi = xi −
x z2 − xz z

D(z)
=

xi s
2D(z)− x z2 + xz z

s2D(z)

=

xi
(

s
(ex)
i

)2
D(ex)(z)−

∑

j 6=i

wjxj

(

z2 − zjz
)

s2D(z)
=

xi
(

s
(ex)
i

)2
D(ex)(z)−

∑

j 6=i

wjCjxj

s2D(z)
,

Cj = z2 − zjz , r
(ex)
i

(x) =

xi
(

s(ex)
)2
D(ex)(z)−

∑

j 6=i

wjCjxj

(s(ex))2D(ex)(z)
Numerators are identical!
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Geometric mean with optimal weights

Denote the geometric mean V
(gm)
i

(r) =
√

V (r)V (ri )(ex).

V
(gm)
i

(r) =

(

s
(ex)
i

)4(
D

(ex)
i

(z)
)2
V (ǫi ) +

∑

j 6=i

w2
j C

2
j V (ǫj )

s2D(z)(s
(ex)
i

)2D
(ex)
i

(z)
.

The structure is the same as for the ordinary variances of residuals: the linear
combination of resolution variances ⇒ can be handled similarly.
According to [R.K. Carnegie, et al, NIM A 538(2005)372] and [D.C. Arogancia, et al,
NIM A 602(2009)403] the weights wi should be equal to inverse variance
wi = 1/V (ǫi ) (optimal for the least squares method). Then,

V
(gm)
i

(r) =

(

s
(ex)
i

z2 − z
2)2

V (ǫi ) +
∑

j 6=i

wjC
2
j wiV (ǫi )

(siz2 − z
2
)(s

(ex)
i

z2 − z
2
)

=

(

s(s − wi )z2
2
− (2s − wi )z

2
z2 + z

4
)

V (ǫi )

s(s − wi )z2
2
− (2s − wi )z

2
z2 + z

4
= V (ǫi ).

This result is beautiful, but useless, because in order to obtain residuals with weights
wi = 1/V (ǫi ), we have already to know these very resolutions

√

V (ǫi ), which we want
to obtain. Numerical tests show that an iteration procedure with remaking the
residuals with previously obtained weights is not useful too.
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Geometric mean with unity weights
Another interesting special case is wi = 1, for which

V
(gm)
i

(r) =

(

(N − 1)z2 − z
2
)2

V (ǫi ) +
∑

j 6=i

(

z2 − zjz
)2
V (ǫj )

(

Nz2 − z
2)(

(N − 1)z2 − z
2)

.

Let us assume that we have a telescope of detectors with the same resolution
V (ǫj ) = B and we want to study the tested detector i having possibly different
resolution. Then, equation simplifies to

V
(gm)
i

(r) =

(

(N − 1)z2 − z
2
)

V (ǫi ) + z2B

(

Nz2 − z
2)

.

This allows us to determine V (ǫi ) provided that B is known or if B is a function of
V (ǫi ). If B = V (ǫi )

V
(gm)
i

(r) = V (ǫi ) ,

The Monte-Carlo simulations in Ref. [T. Alexopoulos et al., JINST, 9 (2014) P01003]
seem to confirm that this formula is correct for equal resolutions and not accurate for
non-equal resolutions, but unfortunately this work like many others do not specify
which weights were used for track fitting. So we can only assume that the weights
were unity by default. My simulations with unity weights bring about to the same
conclusion. Refs. [Carnegie,Arogancia] also do not comment on what weights should
be used to calculate the residuals in practical applications of the equation

V
(gm)
i

(r) = V (ǫi ). Note that the same results can be easily obtained from any single
residual:

V (ǫi ) =
V (ri )

∑N
j=1 u

2
ij

.
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Reconstruction of resolution, three detecting layers

For 3 detecting layers all equations are linearly dependent. There are no combination
of equations for residuals, correlations and geometric means with arbitrary weights and
arbitrary z-positions, which allows one to obtain anything else.

For example, 3 layers, unity weights and
z1 = −1, z2 = 0, z3 = 1.
Obviously, all lines are linearly dependent. H =









1
36

1
9

1
36

1
9

4
9

1
9

1
36

1
9

1
36









Layer permutations:

The order
of flayers:







II I III

I II III

I III II






H =









1
9

1
36

1
36

1
9

4
9

1
9

1
36

1
36

1
9









H−1 =









10 − 1
2

−2

−2 5
2

−2

−2 − 1
2

10









The idea to check layer permutations was proposed by N. V. Gruzinsky.

All resolutions can be obtained, if permutations or moving is possible.
It is enough to move just one layer to 3 different positions (in total).
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Reconstruction of resolution, four detecting layers

For 4 detecting layers all equations are linearly dependent.
This was obtained by Reduce computer algebra system.
Layer permutations or moving allow the user to obtain separate resolutions, as in the
case of 3 layers.
But less detained information can be obtained without permutations.
Consider 4 layers with unity gaps, 3-layer straight lines, fitted with unity weights, and
residuals by the fourth layers (“exclusive” residuals).

H =













1 16
9

1
9

4
9

16
49

1 4
49

1
49

1
49

4
49

1 16
49

4
9

1
9

16
9

1













This matrix is singular.
Subtract the second line of H from the other lines i = 1, 3, 4 with factors hi,2/h2,2,
subtract the third line of H from the other lines i = 1, 2, 4 with factors hi,3/h3,3,
subtract the first line of H from the other lines i = 2, 3, 4 with factors hi,1/h1,1.
In addition, subtract the second line of H with factor h3,4/h2,4 from the third line.
The same operations with V (r) are assumed. The resulting H-matrix is













200
477

0 0 200
477

0 1 0 −1
3

0 2385
2401

2385
2401

0

0 0 0 0












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Reconstruction of resolution, four detecting layers (2)

Equating the last element of modified similarly V (r) to zero one can obtain the
dependence of V (r4) on the other three residuals:

V (r4) = V (r1)−
49

27
(V (r2)− V (r3)).

The identical h1,1 = h1,4 and h2,2 = h2,3 means that it is possible to obtain the
average squared resolutions:
V (ǫ1) + V (ǫ4)

2
=

=
1431V (r1)− 2548V (r2) + 49V (r3)

1200
=

477(V (r1) + V (r4))− 833(V (r2) + V (r3))

800
,

V (ǫ2) + V (ǫ3)

2
=

=
−459V (r1) + 1372V (r2) + 539V (r3)

1200
=

−153(V (r1) + V (r4)) + 637(V (r2) + V (r3))

800
,

1

4

4
∑

i=1

V (ǫi ) =
81(V (r1) + V (r4))− 49(V (r2) + V (r3))

400
.

The last result can be obtained also by finding appropriate values of parameters αi in
the linear combination

4
∑

i=1

αiV (ri ) = α⊺HV (ǫ) =
1

4

4
∑

i=1

V (ǫi ), H⊺α =
1

4
1 .

with taking into account symmetry α1 = α4 and α2 = α3.
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Reconstruction of resolution, four detecting layers (3)

If to add the first line of the final presented H-matrix with a factor (1/6)/(200/477)
to the second line and to assume that V (ǫ1) ≈ V (ǫ4),
it is possible to reconstruct the resolution of the second and the third layer separately.
If V (ǫ1) 6= V (ǫ4), the result is not exact, but is still reasonable.

The “magic” ratio H24/H22 = −1/3 appeared in H-matrix after described operations
was obtained by many the other methods of line drawing for unity weights and equal
spacing, including even the use of geometrical means instead of residuals for
constructing H-matrix.

If z2 − z1 = z4 − z3 (configuration is symmetric), one can obtain similar results (with
different numerical parameters).

If z2 − z1 6= z4 − z3, exact averages cannot be calculated.
If the difference is not large, approximate averages can be obtained.
One of the methods is by fitting vector α from the previous slide. If can be done
algebraically or numerically. Details are in future paper.
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Reconstruction of resolution, five detecting layers

• For any 4 detector layers we can write 3 independent equations.

• Consider two combinations of 4 layers taken from 5 layers, such that the second
combination includes the layer which was not included in the first one.

• For the second combinations of layers write equations that include the replaced
layer.

• Then any equation of the second combination is not linearly dependent on
equations of the first combination because of the appearance of extra layer.

• Therefore we can obtain 5 and even more independent equations.

For example, two-layer straight lines provide 195 non-singular systems of equations.
Obviously, there are much more independent equations for 6- and more-layer detectors.
It is reasonable to use simple “exclusive” residuals with number of equations being
equal to the number of layers.
The example of inverse matrix for equally spaced five layers:

H−1 =



















1.746 −1.749 −0.187 0.701 −0.653

−0.571 1.578 −0.022 −0.260 0.229

−0.046 −0.017 1.026 −0.017 −0.047

0.228 −0.260 −0.022 1.578 −0.571

−0.654 0.701 −0.188 −1.748 1.746



















.
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Conclusion

1. A method for reconstructing individual resolutions of detecting layers in
multi-layer detectors is developed.

2. The individual layer resolutions can be obtained for 3- and 4-layer detectors only
if there is a possibility to move the layers.

3. If the layers cannot be moved, but the 4-layer detector is symmetric, the following
values can be obtained:

a) The average squared resolution of four layers;
b) The average squared resolutions of layers 1 and 4, as well as 2 and 3;
c) If the resolutions of layers 1 and 4 are assumed to be equal, the individual resolutions of

all layers (assuming the first and the fourth identical) can be obtained.

4. If the symmetry is slightly violated in the 4-layer detector, approximate estimates
of all values mentioned in the previous item can be obtained.

5. The individual resolutions can be obtained for 5- and more-layer detectors.

6. All these results can be calculated by either residuals or geometrical means of
inclusive and exclusive residuals. The geometric means of residuals, as well as
correlations of residuals, do not produce any additional information. The
geometric means obtained with unity weights are equal to the layer resolution
only if the detector layers have the same resolution.

7. If some layer resolution can be obtained algebraically, then the shape of the
corresponding error distribution can be obtained by fitting.
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Thank you for your attention!
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