Рождение медиаторов темной материи в экспериментах с фиксированной мишенью

> Выполнил: Ворончихин И.В., Научный руководитель: Кирпичников Д.В., к.ф.-м.н., и.о. зам. зав. отделом/с.н.с ОТФ, ИЯИ РАН

Томск, 26 сентября 2024 г.

Введение	Модели медиаторов	Реликтовая плотность	Излучение медиатора	Ограничения	Заключение	Дополнительный материал
●000	0000	00000000	0000000000000	0000	00000	00000

Введение

ведение	Модели медиаторов	Реликтовая плотность	Излучение медиатора	Ограничения	Заключение	Дополнительный материал
00	0000	00000000	0000000000000	0000	00000	00000

Актуальность

(Слева) Ротационные кривые галактик [1].

(Справа) Составное изображение скопления Пуля (1Е0657-56) [2].

Количество скрытой массы влияет на спектр космического микроволнового излучения [3] и крупномасштабную структуру Вселенной [4].

 V. C. Rubin, N. Thonnard, and W. K. Ford, Jr. Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 R = 4kpc to UGC 2885 R = 122 kpc, Astrophys. J., 238:471, 1980.
 D. Cloweet et al., A direct empirical proof of the existence of dark matter. Astrophys. J. Lett., 648:L109–L113,

2006, astro-ph/0608407 [astro-ph]

3. W. Hu, S. Dodelson, Cosmic Microwave Background Anisotropies, Ann. Rev. Astron. Astrophys. T. 40. C. 171–216, 2002, astro-ph/0110414 [astro-ph]

4. G. R. Blumenthal, S. M. Faber, J. R. Primack, M. J. Rees, Formation of Galaxies and Large Scale Structure with Cold Dark Matter, Nature T. 311. C. 517-525, 1984

Проблема и цель работы

Проблема. При исследовании динамики астрофизических объектов возникли противоречия между наблюдениями и теоретическими предсказаниями их поведения. Решение данной проблемы возможно с помощью введения понятия скрытой массы, впоследствии названной темной материей. В настоящее время такой подход стал общепринятым. Однако, поиски темного сектора усложняет то, что темная материя проявляется только через гравитационные взаимодействия. Другими словами, астрофизические свидетельства темной материи ограничивают только поведение ее массовой плотности и не фиксируют природу ее частиц.

Цель работы. Получить ограничения на пространство параметров моделей темной материи на основе отсутствия сигнальных событий рождения медиаторов темной материи в экспериментах с фиксированной мишенью.

Структура диссертации

- Глава 1. Приводятся основные наблюдения, которые мотивируют темную материю, методика расчета реликтовой плотности темной материи и модели рассматриваемых медиаторов.
- Глава 2. Рассматривается вычисление дифференциального сечения для процесса рождения медиатора на ядре в приближении Вайцзеккера-Вильямса и в подходе расчетов на древесном уровне. Также рассматривается расчет полных сечений для процессов аннигиляции через медиатор.
- Глава 3. Обсуждаются полученные сечения для рассматриваемых процессов с учетом различных атомных упругих форм-факторов для процесса рождения медиатора на ядре и соответствующие реликтовые кривые. Приводятся полученные ограничения на константу смешивания для скалярного и тензорного медиаторов с лептоном.

Введение	Модели медиаторов	Реликтовая плотность	Излучение медиатора	Ограничения	Заключение	Дополнительный материал
0000	●000	00000000	0000000000000	0000	00000	00000

Модели медиаторов легкой темной материи

Медиатор темной материи

- Предположение о термодинамическом равновесии темной материи с частицами видимого сектора в ранней Вселенной приводит к тому, что пространство параметров темной материи лежит в области чувствительности текущих и планируемых экспериментов.
- ② Значительные ограничения на темную материи с массами выше 1 ГэВ [1-3] мотивируют изучение в области легкой темной материи с массами 2m_e ≤ m_{MED} ≤ 1 ГэВ.
- Для легкой термальной темной материи необходим механизм истощения до наблюдаемой реликтовой плотности темной материи [4].
- Для сечений аннигиляции в видимый сектор через медиатор, которые не подавленны по скорости, справедливы значительные ограничения ограничение [5].

1. Results from a search for dark matter in the complete LUX exposure (LUX collaboration), Phys. Rev. Lett. T. 118, No 2. C. 021303., 2017, 1608.07648 [astro-ph.CO]

2. Dark Matter Results From 54-Ton-Day Exposure of PandaX-II Experiment (PandaX-II collaboration), Phys. Rev. Lett. T. 119, No 18., 2017, 1708.06917 [astro-ph.CO]

3. First Dark Matter Search Results from the XENON1T Experiment (XENON1T collaboration), Phys. Rev. Lett. T. 119, No 18., 2017, 1705.06655 [astro-ph.CO]

4. B. W. Lee and S. Weinberg, Cosmological Lower Bound on Heavy-Neutrino Masses, Phys. Rev. Lett. 39, 165, 1977

5. S. Galli, T. R. Slatyer, M. Valdes, F. Iocco., Systematic Uncertainties In Constraining Dark Matter Annihilation From The Cosmic Microwave Background, Phys.Rev.D 88 063502, 2013, 1306.0563 [astro-ph.CO]

Введение **Модели медиаторов** Реликтовая плотность Излучение медиатора Ограничения Заключение Дополнительный мат

Тензорный медиатор

Эффективный лагранжиан для массивного спин-2 поля $h_{\mu\nu}$ принимает вид [1,2]:

$$\mathcal{L}_{\rm eff}^{\rm G} \supset \frac{c_{\rm SM}^{\rm G}}{\Lambda} h^{\mu\nu} T_{\mu\nu}^{\rm SM} + \frac{c_{\rm DM}^{\rm G}}{\Lambda} h^{\mu\nu} T_{\mu\nu}^{\rm DM},$$

Тензор энергии-импульса для частиц стандартной модели и темной материи [2,3]:

$$\begin{split} T^{\rm SM}_{\mu\nu} &= \left[\frac{1}{4}\eta_{\mu\nu}F_{\lambda\rho}F^{\lambda\rho} - F_{\mu\lambda}F^{\lambda}{}_{\nu}\right] - \frac{i}{4}\bar{l}\left[\gamma_{\mu}\overleftrightarrow{D}_{\nu} + \gamma_{\nu}\overleftrightarrow{D}_{\mu}\right]l + \frac{i}{2}\eta_{\mu\nu}\bar{l}\gamma_{\rho}\overleftrightarrow{D}^{\rho}l,\\ T^{\rm S}_{\mu\nu} &= \partial_{\mu}S\partial_{\nu}S - (1/2)\eta_{\mu\nu}(\partial_{\rho}S)^{2} + (1/2)\eta_{\mu\nu}m^{2}_{\rm S}S^{2},\\ T^{\rm V}_{\mu\nu} &= \frac{1}{4}\eta_{\mu\nu}V_{\lambda\rho}V^{\lambda\rho} - V_{\mu\lambda}V^{\lambda}{}_{\nu} + m^{2}_{\rm V}V_{\mu}V_{\nu} - (1/2)m^{2}_{\rm V}\eta_{\mu\nu}V_{\alpha}V^{\alpha},\\ T^{\psi}_{\mu\nu} &= -(i/4)\bar{\psi}\left[\gamma_{\mu}\overleftrightarrow{\partial}_{\nu} + \gamma_{\nu}\overleftrightarrow{\partial}_{\mu}\right]\psi + \eta_{\mu\nu}m_{\rm DM}\bar{\psi}\psi + (i/2)\eta_{\mu\nu}\bar{\psi}\gamma^{\rho}\overleftrightarrow{\partial}_{\rho}\psi. \end{split}$$

1. G. F. Giudice, Riccardo Rattazzi, J. D. Wells, Quantum gravity and extra dimensions at high-energy colliders, Nucl.Phys.B 544 3, 1999, hep-ph/9811291 [hep-ph]

2. H. M. Lee, M. Park, V. Sanz, Gravity-mediated (or Composite) Dark Matter, Eur. Phys. J. C 74, 2715, 2014, 1306.4107 [hep-ph].

3. M. G. Folgado, A. Donini, N. Rius, Gravity-mediated Scalar Dark Matter in Warped Extra-Dimensions, Eur. Phys. J. C 74, 2715, 2014, 1907.04340 [hep-ph].

Скалярный медиатор

Для сценария с электронспецифичным скалярным медиатором ϕ и скалярной S [1], фермионной ψ [2], майорановской χ [3] и векторной V [4] типов темной материи использованы следующие эффективные лагранжианы:

$$\begin{split} \mathcal{L}_{\text{eff}}^{\text{S}} &\supset \frac{1}{2} c_{SS}^{\phi} \phi S^{2} + c_{ee}^{\phi} \phi \overline{e}e, \qquad \qquad \mathcal{L}_{\text{eff}}^{\psi} \supset c_{\psi\psi}^{\phi} \phi \overline{\psi} \psi + c_{ee}^{\phi} \phi \overline{e}e, \\ \mathcal{L}_{\text{eff}}^{\chi} \supset \frac{1}{2} c_{\chi\chi}^{\phi} \phi \overline{\chi} \chi + c_{ee}^{\phi} \phi \overline{e}e, \qquad \qquad \mathcal{L}_{\text{eff}}^{\text{V}} \supset \frac{1}{4} c_{VV}^{\phi} \phi V^{\mu\nu} \widetilde{V}_{\mu\nu} + c_{ee}^{\phi} \phi \overline{e}e, \end{split}$$

1. A. Djouadi, O. Lebedev, Y. Mambrini, and J. Quevillon, Vector Higgs-portal dark matter and the invisible Higgs, Phys. Lett. B 707, 570, 2012, 1111.4482 [hep-ph]

2. G. Krnjaic, Probing light thermal dark matter with a Higgs portal mediator, Phys. Rev. D 94, 073009, 2016, 1512.04119 [hep-ph]

3. A. Djouadi, O. Lebedev, Y. Mambrini, and J. Quevillon, Implications of LHC searches for Higgs-portal dark matter, Phys. Lett. B 709, 65, 2012, 1112.3299 [hep-ph]

4. K. Kaneta, H.-S. Lee, and S. Yun, Dark photon relic dark matter production through the dark axion portal, Phys. Rev. D 95,115032, 2017, 1704.07542 [hep-ph]

Введение	Модели медиаторов	Реликтовая плотность	Излучение медиатора	Ограничения	Заключение	Дополнительный материал
0000	0000	●0000000	0000000000000	0000	00000	00000

Кривые реликтовой плотности термальной темной материи

Уравнения Фридмана

Уравнение Эйнштейна и тензор энергии-импульса идеальной жидкости $T_{\mu\nu}$:

$$R_{\mu\nu} - (1/2)Rg_{\mu\nu} = \kappa T_{\mu\nu} + \Lambda g_{\mu\nu}, \qquad T_{\mu\nu} = (\varepsilon + P)u_{\mu}u_{\nu} + Pg_{\mu\nu}.$$

Метрика Фридмана—Леметра—Робертсона—Уокера [1]:

$$g_{\mu\nu} = (1, -a^2 \gamma_{ij}), \qquad g^{\mu\nu} = (1, -1/a^2 \gamma^{ij}), \qquad \gamma_{ij} = \left(a^2/(1 - kr^2), a^2r^2, a^2r^2\sin^2(\theta)\right).$$

где a = a(t) - масштабный фактор. Первое уравнение Фридмана [2]:

$$H^{2}/H_{0}^{2} = \Omega_{\rm r} (a_{0}/a)^{4} + \Omega_{\rm m} (a_{0}/a)^{3} + \Omega_{\rm k} (a_{0}/a)^{2} + \Omega_{\Lambda},$$

Параметры плотности, $\Omega,$ и критическая плотность энергии $\varepsilon_{\rm cr}:$

$$\Omega_i = \varepsilon_i / \varepsilon_{cr}, \quad \Omega_{\rm k} = -k/(H_0 a_0)^2, \quad \Omega_{\Lambda} = \Lambda/(3H_0^2), \quad \varepsilon_{\rm cr} = 3H_0^2/(8\pi G).$$

1. Friedman A. On the Curvature of space, Z. Phys, 10, 377, 1922.

2. V. A. Rubakov, D. S. Gorbunov, Introduction to the Theory of the Early Universe: Hot big bang theory, Singapore: World Scientific, 2017, ISBN 978-981-320-987-9.

Термодинамические параметры

Модели медиаторов Реликтовая плотность 0000

Термодинамические параметры для і-ого типа частиц в ранней Вселенной:

$$n_i = (3/4)\zeta(3)\frac{g_i}{\pi^2}T_i^3, \quad \varepsilon_i = (7/8)g_i\frac{\pi^2}{30}T_i^4, \quad P_i = \frac{1}{3}\varepsilon_i, \quad s_i = (7/8)g_i\frac{2\pi^2}{45}T_i^3.$$

Полные плотности энергии и энтропии в ранней Вселенной [1]:

$$\varepsilon = \sum_{i} \varepsilon_i = g_{*\varepsilon}(T) \frac{\pi^2}{30} T^4, \qquad s = \sum_{i} s_i = g_{*s}(T) \frac{2\pi^2}{45} T^3.$$

Термодинамические параметры для холодной темной материи:

$$n_{\rm eq} \approx g \left(\frac{mT}{2\pi}\right)^{3/2} e^{-m/T}, \qquad \varepsilon \approx mn + \frac{3}{2}nT \approx mn, \qquad P \approx nT.$$

Вводя параметр x=m/T, на основе сохранения полной энтропии справедливо dx/dt=H(t)x

1. Husdal L. On Effective Degrees of Freedom in the Early Universe, Galaxies 4, 4, 78, 2016, 1609.04979 [astro-ph.CO]

Уравнение Больцмана

Уравнение Больцмана для полной плотности числа частиц n [1]:

$$\dot{n} + 3H(t)n = -c \left\langle \sigma v_{\text{Mol}} \right\rangle \left(n^2 - n_{eq}^2 \right),$$

где c = 1 для случая идентичных частиц 1 и 2, т.е. $n = n_1 = n_2$ и c = 1/2 в противном случае, т.е. $n = n_1 + n_2 \approx 2n_1$ [2]. Значение параметра x в момент отщепления темной материи:

$$c n_{\rm eq}(x_f) \langle \sigma v_{\rm Mol} \rangle |_{x=x_f} \simeq H(x_f).$$

Используем переменную Y = n/s, текущие значение для которой в случае термальной темной материи:

$$Y_0^{-1} = \frac{cs(m_{\rm DM})}{H(m_{\rm DM})} \int_{x_f}^{\infty} \frac{\langle \sigma v_{\rm Mol} \rangle}{x^2} dx.$$

Kolb E. W., Turner M. S. The Early Universe. T. 69. - 1990. - ISBN 978-0-201-62674-2.
 Srednicki M., Watkins R., Olive K. A. Calculations of Relic Densities in the Early Universe // Nucl. Phys. B - 1988. - T. 310. - C. 693.

Реликтовая плотность темной материи

Реликтовая плотность

Кривые реликтовой плотности холодной темной материи задаются выражением [1]:

$$\Omega_{\rm c}h^2 = \frac{m_{\rm DM}n_0}{\varepsilon_{\rm cr}}h^2 = 0.85 \cdot 10^{-10} \cdot \frac{g_{*s}^{-1/2}(m_{\rm DM})}{c} \left(\int\limits_{x_f}^{\infty} \frac{\langle \sigma v_{\rm Mol} \rangle}{x^2} dx\right)^{-1} \Gamma \Im B^{-2},$$

где $x = m_{\rm DM}/T$. Термально усредненное сечение рассеяния [2]:

$$\left\langle \sigma v_{\text{Mol}} \right\rangle = \frac{x}{8m_{\text{DM}}^5 \left(K_2\left(x\right)\right)^2} \int\limits_{4m_{\text{DM}}^2}^{\infty} \sigma(s) \frac{\lambda(s, m_{\text{DM}}^2, m_{\text{DM}}^2)}{\sqrt{s}} K_1\left(\frac{x\sqrt{s}}{m_{\text{DM}}}\right) ds.$$

Согласно наблюдениям, текущие значения для параметров плотности [3]:

$$|\Omega_{\rm k}| < 0.01, \quad \Omega_{\rm r} = 9.4 \times 10^{-5}, \quad \Omega_{\rm b} = 0.05, \quad \Omega_{\rm c} = 0.27, \quad \Omega_{\Lambda} = 0.68.$$

1. E. W. Kolb and M. S. Turner, The Early Universe, Vol. 69 (1990)

2. P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: Improved analysis, Nucl. Phys. B 360, 145 (1991)

3. Planck 2018 results. VI. Cosmological parameters // Astron. Astrophys. - 2020. - T. 641. - A6.

Нерелятивистское приближение

Нерелятивистское приближение для усреднения сечения [1]:

Реликтовая плотность

$$\langle \sigma v_{\text{Mol}} \rangle = \frac{1}{2\sqrt{\pi}} \sum_{k=0}^{\infty} 4^{k+1} \Gamma(k+3/2) \; \frac{a_k}{k!} x^{-k} \approx a_0 + 6a_1 x^{-1} + 30a_2 x^{-2}$$

Реликтовая плотность при $\langle \sigma v_{\text{Mol}} \rangle \approx \sigma_0 x^{-k}$ [2]:

$$x_f = \ln\left(\sigma_0 \frac{3\sqrt{5}M_{\rm Pl}}{2\pi^{5/2}} \frac{g_i m_{\rm DM}}{\sqrt{g_{*s}(m_{\rm DM})}}\right), \quad \Omega_c h^2 = \frac{0.85 \cdot 10^{-10}}{c} \frac{(k+1)x_f^{k+1}}{g_{*s}^{1/2}(m_{\rm DM})\sigma_0} \ \Gamma \Im B^{-2}.$$

S.-M. Choi, H. M. Lee, and M.-S. Seo, Cosmic abundances of SIMP dark matter, JHEP 04, 154
 E. W. Kolb and M. S. Turner, The Early Universe (1990)

Аннигиляция темной материи через медиатор

Реликтовая плотность

Формула Брейта-Вигнера [1]:

$$\sigma_{\rm DM \ DM \to MED \to e^-e^+} = N_{\rm spin}^{\rm BW} \frac{16\pi}{(1 - 4m_{\rm DM}^2/s)} \frac{\Gamma_{\rm MED \to DM \ DM}(s)\Gamma_{\rm MED \to e^-e^+}(s)}{(s - m_{\rm MED}^2)^2 + m_{\rm MED}^2(\Gamma_{tot})^2},$$

где $N_{\rm spin}^{\rm BW} = C_{\rm BW}(2J_{\rm MED} + 1)(2S_{\rm init_1} + 1)^{-1}(2S_{\rm init_2} + 1)^{-1}$ - коэффициент, учитывающий внутренние степени свободы и $C_{\rm BW} = 1$ и $C_{\rm BW} = 2$ для различных и одинаковых частиц в исходном состоянии [2], соответственно. Для полной ширины справедливо, что $\Gamma_{tot} \approx \Gamma_{\rm MED \to DM \ DM}$

В нерелятивистском приближении, $s \simeq 4m_{\rm DM}^2$, сечение аннигиляции масштабируется параметризацией Брейта-Вигнера в следующем виде:

$$\langle v_{\rm Mol}\sigma_{\rm MED}\rangle \propto \alpha_{\rm MED} \left[(4m_{\rm DM}^2 - m_{\rm MED}^2)^2 + (\Gamma_{\rm MED \to DM \ DM})^2 m_{\rm MED}^2 \right]^{-1}$$

R. L. Workman et al. Review of Particle Physics. PTEP, 2022:083C01, 2022.
 A. I. L'vov About the Breit–Wigner Formula for Identical Particles // Phys. Atom. Nucl. - 2018. - T. 81, № 6. - C. 748-749.

Реликтовые кривые темной материи в случае скалярного медиатора

m_{DM}, GeV

Реликтовые кривые темной материи для электронспецифичного скалярного медиатора [1].

1. I. V. Voronchikhin and D. V. Kirpichnikov. Probing scalar, Dirac, Majorana, and vector dark matter through a spin-0 electron-specific mediator at electron fixed-target experiments. Phys. Rev. D, 109(7):075012, 2024

Введение	Модели медиаторов	Реликтовая плотность	Излучение медиатора	Ограничения	Заключение	Дополнительный материал
0000	0000	00000000	•000000000000	0000	00000	00000

Рождение медиатора в экспериментах с фиксированной мишенью

Эксперименты с фиксированной мишенью

- Области легкой термальной темной материи хорошо мотивирована для экспериментов с фиксированной мишенью из-за комбинирования преимуществ высоких интенсивности и энергии первичного пучка [1].
- **④** Предполагается невидимая мода, т.е. для темной материи и медиатора предполагается, что $Br(MED \rightarrow DM DM) \approx 1$ и $2m_{DM} \lesssim m_{MED}$.

1. Гниненко С. Н., Красников Н. В., Матвеев В. А. Поиск лёгкой тёмной материи в эксперименте NA64, Успехи физических наук. – 2021. – Т. 191. – №. 12. – С. 1361-1386.

граничения З

Заключение Допе 00000 000

Дополнительный материал 00000

Параметры экспериментов с фиксированной мишенью

	NA64e [1]	LDMX $[2]$	NA64 μ [3]	M^{3} [4]
Z	82	13	82	74
$A, \ r \cdot \text{моль}^{-1}$	207	27	207	184
$ ho, \ \Gamma \cdot cm^{-3}$	11.34	2.7	11.34	19.3
L_T , см	0.56	3.56	22.5	17.5
x_{min}	0.5	0.7	0.5	0.4
E_0, Γ эВ	100	16	160	15
LOT	9.37×10^{11}	-	2×10^{10}	-
LOT_{max}	1×10^{12}	1×10^{15}	5×10^{13}	1×10^{13}

1. Y. M. Andreev et al. (NA64 Collaboration), Search for Light Dark Matter with NA64 at CERN // Phys. Rev. Lett. 131, 161801, 2023

2.Akesson et al. (LDMX collaboration), A High Efficiency Photon Veto for the Light Dark Matter eXperiment // JHEP. - 2020 - T. 04. - C. 003.

3. H. Sieber, D. Banerjee, P. Crivelli, E. Depero, S.N. Gninenko, D.V. Kirpichnikov, M.M. Kirsanov, V. Poliakov, and L. Molina Bueno, Prospects in the search for a new light Z' boson with the NA64 μ experiment at the CERN SPS // Phys. Rev. D 105, 052006, 2022

4. Y. Kahn, G. Krnjaic, N. Tran, A. Whitbeck, M^3 : a new muon missing momentum experiment to probe $(g-2)_{\mu}$ and dark matter at Fermilab, JHEP. - 2018. - T. 09. - C. 153.

Процесс излучения медиатора на ядре

Процесс $2 \rightarrow 3$ с кинематической точки зрения может быть представлен в виде:

$$l^{\pm}(p) + N(P_i) \rightarrow l^{\pm}(p') + N(P_f) + \text{MED}(k),$$

Излучение медиатора

где k, p, p'- 4-импульсы медиатора темной материи, входящего и выходящего лептона, соответственно; $P_i = (M,0)$ и $P_f = (P_f^0, \boldsymbol{P}_f)$ - 4-импульсы исходного и конечного ядра, соответственно, $t \equiv -q^2 = -(P_i - P_f)^2 > 0$ - виртуальность переданного фотона.

Диаграммы процессов излучения тензорного G и скалярного ϕ медиаторов на ядре N при падении на тяжелое ядро заряженного лептона l.

Расчет на древесном уровне

Т

Матричный элемент для процесса 2 \rightarrow 3 и соответствующий квадрат матричного элемента могут быть записаны как, соответственно:

Излучение медиатора

$$i\mathcal{M}_{2\to3}^{\text{MED}} = iC_{\mathcal{M}}\mathcal{L}^{\mu}P_{\mu}, \quad \overline{\left|\mathcal{M}_{2\to3}^{\text{MED}}\right|^2} = C_{\mathcal{M}}^2 \left|\mathcal{A}_{2\to3}^{\text{MED}}\right|^2,$$

где обозначено $C_{\mathcal{M}} = -c_{ll}^{\text{MED}} e^2 Z F_{s}(t)/t$. Дифференциальное сечение для процесса излучения медиатора на ядре принимает вид [1]:

$$\frac{d\sigma_{2\to3}}{dxd\cos(\theta_{\rm MED})} = \frac{1}{64\pi^3} \frac{|\mathbf{k}|E_l}{|\mathbf{p}||\mathbf{k}-\mathbf{p}|} \int_{t_{\rm min}}^{t_{\rm max}} dt \frac{1}{8M^2} \int_{0}^{2\pi} \frac{d\phi_{\rm q}}{2\pi} \left|\mathcal{M}_{2\to3}^{\rm MED}\right|^2,$$

equation of the term of the term of the term of the term of term o

1. Y.-S. Liu, D. McKeen, G. A. Miller, Validity of the Weizsäcker-Williams approximation and the analysis of beam dump experiments: Production of a new scalar boson, Phys.Rev.D 95 3, 036010, 2017, 1609.06781 [hep-ph]

Метод Вайцзеккера-Вильямса

Формула Вайцзеккера-Вильямса принимает следующее выражение для двойного дифференциального сечения [1]:

$$\frac{l\sigma(p+P_i \to p'+P_f+k)}{dxd\cos(\theta_{\rm MED})}\bigg|_{\rm WW} = \frac{\alpha\chi}{\pi} \frac{E_l^2 x \beta_{\rm MED}}{1-x} \left. \frac{d\sigma(p+q \to k+p')}{d(pk)} \right|_{t=t_{\rm min}},$$

где поток виртуальных фотонов χ выражается через упругий форм-фактор F(t) как:

$$\chi = Z^2 \int_{t_{\rm min}}^{t_{\rm max}} \frac{t - t_{\rm min}}{t^2} F^2(t) dt,$$

и минимальное значение виртуальности переданного фотона принимает вид:

$$t_{\min}(x,\theta_{\text{MED}}) \simeq (E_l^2 \theta_{\text{MED}}^2 x + m_{\text{MED}}^2 (1-x)/x + m_l^2 x)^2 / (4E_l^2 (1-x)^2) > t_{\min}^{\text{IWW}} = \frac{m_{\text{MED}}^4}{4E_0^2}.$$

Матричный элемент для процесса 2 \rightarrow 2 принимает вид $i\mathcal{M}_{2\rightarrow 2}^{\text{MED}} = ic_{ll}^{\text{MED}} e\mathcal{L}^{\mu} \varepsilon_{\mu}(q).$

1.Kwang Je Kim and Yung-Su Tsai. Improved Weizsacker-Williams Method and Its Application to Lepton and W-Boson Pair Production. Phys. Rev. D, 8:3109, 1973.

Форм-фактор

Атомный форм-фактор Тсаи-Шиффа, Хельма и экспоненциальный, в следующем виде, соответственно [1, 2, 3]:

$$F_{\rm TS}(t) = \frac{F_{\rm scr}(t)}{(1+t/t_{\rm d})}, \quad F_{\rm H}(t) = F_{\rm scr}(t) \frac{3j_1(\sqrt{t}R_{\rm H})}{\sqrt{t}R_{\rm H}} e^{-s_{\rm H}^2 t/2},$$
$$F_{\rm E}(t) = F_{\rm scr}(t) \exp\left(-tR_{\rm exp}^2/6\right),$$

где $F_{\rm scr}(t) = t/(t_{\rm a}(Z) + t)$ - форм-фактор, соответствующий экранированию атомными электронами [1]. Приведенные форм-факторы связаны с зарядовой плотностью через преобразования Фурье.

 Yung-Su Tsai. Pair production and bremsstrahlung of charged leptons. Rev. Mod. Phys., 46:815, 1974.
 Herbi K. Dreiner, Howard E. Haber, and Stephen P. Martin. Two-component spinor techniques and Feynman rules for quantum field theory and supersymmetry. Phys.Rept., 494:1–196, 2010,
 Katherine Freese, Joshua A. Frieman, and Andrew Gould. Signal Modulation in Cold Dark Matter Detection. Phys. Rev. D, 37:3388–3405, 1988

Поток виртуальных фотонов

(Слева) виртуальный поток фотонов как функция нижнего предела t_{\min} при массе медиатора 1 ГэВ для форм-факторов Тсаи-Шиффа F_{TS} , ядерного Хелма $F_{H_{nucl}}$, атомного Хелма F_H и атомного экспоненциального F_E . (Справа) относительная разница между потоком виртуальных фотонов с форм-фактором Тсаи-Шиффа и другими форм-факторами [1].

1. I. V. Voronchikhin and D. V. Kirpichnikov. Probing hidden spin-2 mediator of dark matter with NA64e, LDMX, NA64 μ , and M3. Phys. Rev. D, 106(11):115041, 2022

Интегрирование сечения рождения на ядре

Дифференциальное сечение рождения медиатора на ядре в приближении Вайцзеккера-Вильямса:

$$\frac{d\sigma(p+P_i \to p'+P_f+k)}{dxd\cos(\theta_{\rm MED})}\Big|_{\rm WW} \sim \chi_{\rm \scriptscriptstyle TS}(x,\theta_{\rm MED}) \frac{P(s_2,t_2,u_2)}{(s_2-m_l^2)^k (u_2-m_l^2)^l t_2^n},$$

которое можно проинтегрировать по углу θ_{MED} аналитически. В частности, результаты были использованы в статье [1] для расчета ограничений в случае скалярного и псевдоскалярного медиаторов в мюонной моде эксперимента NA64. Переменные Мандельштама:

$$u_2 = m_l^2 - U, \quad t_2 \simeq -Ux/(1-x) + m_{\text{MED}}^2, \quad s_2 \simeq U/(1-x) + m_l^2.$$

$$U \equiv m_l^2 - u_2 \simeq E_l^2 \theta_{\text{MED}}^2 x + m_{\text{MED}}^2 (1-x)/x + m_l^2 x.$$

Поток виртуальных фотонов:

$$\chi_{\rm \scriptscriptstyle TS}(x,\theta_{\rm \rm MED}) \sim \left\{ \left[C_1^{\chi} + C_2^{\chi} t_{\rm min}(x,\theta_{\rm \rm MED}) \right] + \left[C_3^{\chi} - 2t_{\rm min}(x,\theta_{\rm \rm MED}) \right] \ln \left[\frac{t_{\rm min}(x,\theta_{\rm \rm MED}) + t_{\rm d}}{t_{\rm min}(x,\theta_{\rm \rm MED}) + t_{\rm a}} \right] \right\}$$

1. H. Sieber, D. V. Kirpichnikov, I. V. Voronchikhin, P. Crivelli, S. N. Gninenko, M. M. Kirsanov, N. V. Krasnikov, L. Molina-Bueno, and S. K. Sekatskii. Probing hidden sectors with a muon beam: Implication of spin-0 dark matter mediators for the muon (g-2) anomaly and the validity of the Weiszacker-Williams approach. Phys. Rev. D, 108(5):056018, 2023

Дифференциальное сечение (скалярный медиатор)

Дифференциальное сечение рождения скалярного медиатора на ядре [1]. 1. Voronchikhin I. V., Kirpichnikov D. V. Implication of the Weizsacker Williams approximation for the dark matter mediator production, 2409.12748 [hep-ph].

Дифференциальное сечение (тензорный медиатор)

Дифференциальное сечение рождения тензорного медиатора на ядре.

Зведение	Модели медиаторов	Реликтовая плотность	Излучение медиатора	Ограничения	Заключение	Дополнительный материал
2000	0000	00000000	0000000000000	0000	00000	00000

Полное сечение

Полное сечение рождения скалярного медиатора на ядре [1].

Полное сечение рождения тензорного медиатора на ядре [1].

1. Voronchikhin I. V., Kirpichnikov D. V., Implication of the Weizsacker Williams approximation for the dark matter mediator production, 2409.12748 [hep-ph]

Аннигиляция в темную материю через медиатор

Формула Брейта-Вигнера:

$$\sigma_{e^-e^+ \to \text{MED} \to \text{DM DM}} = N_{\text{spin}}^{\text{BW}} \frac{16\pi}{(1 - 4m_e^2/s)} \frac{\Gamma_{\text{MED} \to \text{DM DM}}(s)\Gamma_{\text{MED} \to e^-e^+}(s)}{(s - m_{\text{MED}}^2)^2 + m_{\text{MED}}^2(\Gamma_{tot})^2}.$$

Усиление чувствительности для экспериментов с фиксированной мишенью с нижним порогом по энергии $E_{\rm cut}$ и энергией первичного пучка E_0 происходит в диапазоне $\sqrt{2E_{\rm cut}m_e} \lesssim m_{\rm MED} \lesssim \sqrt{2E_0m_e}$, где $s = \simeq 2m_e E_{e^+}$. В случае невидимой моды, считая полную ширину малой как $\Gamma_{tot}/m_{\rm MED} \ll 1$, полное сечение принимает вид:

$$\sigma_{e^-e^+ \rightarrow \rm MED \rightarrow \rm DM \ DM} = N_{\rm spin}^{\rm BW} \frac{16\pi}{(1-4m_e^2/s)} \frac{\pi\Gamma_{\rm MED \rightarrow e^-e^+}(s)}{m_{\rm MED}^2} \delta(s-m_{\rm MED}^2). \label{eq:spin_energy}$$

Введение 0000	Модели медиаторов 0000	Реликтовая плотность 00000000	Излучение медиатора 0000000000000	Ограничения ●000	Заключение 00000	Дополнительный материал 00000

Ограничения на пространство параметров термальной легкой темной материи

Число сигнальных событий

Число сигнальных событий для процесса рождения медиатора на ядре:

Модели медиаторов Реликтовая плотность Излучение медиатора Ограничения

$$N_{\text{MED}}^{\text{brem.}} \simeq \text{LOT} \cdot \frac{\rho N_A}{A} L_T \int_{x_{min}}^{x_{max}} dx \frac{d\sigma_{2\to3}(E_0)}{dx} \eta_{\text{MED}}^{\text{brem.}},$$

0000

Число сигнальных событий для процесса аннигиляции в темную материю через медиатора:

$$N_{\rm MED}^{\rm ann.} \simeq {\rm EOT} \frac{\rho N_A Z L_T}{A} \int_{E_{e^+}^{cut}}^{E_{e^+}^{max}} dE_{e^+} \sigma_{tot}(E_{e^+}) T(E_{e^+}) \eta_{\rm MED}^{\rm ann.},$$

Универсальное дифференциальное распределение длин треков позитронов может быть найдено в статье [1]. В случае *C.L.* 90% для числа событий справедливо $N_{\text{MED}} < 2.3$. 1.Yu.M. Andreev et al. (NA64 collaboration), Search for a light Z' in the $L_{\mu} - L_{\tau}$ scenario with the NA64experiment at CERN, Phys. Rev. D 106, 032015, 2022 2.L. Marsicano, M. Battaglieri, M. Bondi', C. D. R. Carvajal, A. Celentano, M. De Napoli, R. De Vita, E. Nardi, M. Raggi, and P. Valente, Phys. Rev. D 98, 015031 (2018), arXiv:1802.03794 [hep-ex].

введение 0000	модели медиаторов 0000	Реликтовая плотность 00000000	излучение медиатора 00000000000000	Ограничения 00€0	Заключение	Дополнительный материал 00000

Ограничение на константу смешивания для тензорного медиатора

Ограничение на константу смешивания лептона и тензорного медиатора [1,2].

1. I. V. Voronchikhin and D. V. Kirpichnikov. Probing hidden spin-2 mediator of dark matter with NA64e, LDMX, NA64 μ , and M3. Phys. Rev. D, 106(11):115041, 2022

2. I. V. Voronchikhin and D. V. Kirpichnikov. Resonant probing spin-0 and spin-2 dark matter mediators with fixed target experiments. Phys. Rev. D, 107(11):115034, 2023

Ограничение на константу смешивания для скалярного медиатора

m∉,GeV

Ограничение на константу смешивания электрона и скалярного медиатора [1].

1. I. V. Voronchikhin and D. V. Kirpichnikov. Probing scalar, Dirac, Majorana, and vector dark matter through a spin-0 electron-specific mediator at electron fixed-target experiments. Phys. Rev. D, 109(7):075012, 2024

Введение	Модели медиаторов	Реликтовая плотность	Излучение медиатора	Ограничения	Заключение	Дополнительный материал
0000	0000	00000000	0000000000000	0000	●0000	00000

Заключение

Положения, выносимые на защиту (1/2)

• Оценена чувствительность планируемых и текущих экспериментов с фиксированной мишенью в пространстве параметров тензорного медиатора темной материи на основе отсутствия сигнальных событий при торможении высокоэнергетического заряженного лептона в поле тяжелого ядра, где для оценки использовалось приближение Вайцзеккера-Вильямса. В частности, эксперимент NA64e при статистике в 5 × 10¹² электронов, накопленных на мишени, позволит исключить дираковскую темную материю для масс медиатора 2 × 10⁻¹ ГэВ $\lesssim m_{\rm MED} \lesssim 3 \times 10^{-1}$ ГэВ. В свою очередь, эксперимент LDMX позволит исключить дираковскую темную материи в интервале масс медиатора 2 × 10⁻¹ ГэВ $\lesssim m_{\rm MED} \lesssim 6 \times 10^{-1}$ ГэВ при накоплении статистики в 10¹⁵ электронов, накопленных на мишени.

00000

Модели медиаторов Реликтовая плотность Излучение медиатора Ограничения Заключение

⊘ Для экспериментов NA64e и LDMX получены чувствительности в пространстве параметров скалярного и тензорного медиаторов на основе процессов резонансной аннигиляции вторичных позитронов на атомных электронах мишени для различных типов легкой темной материи. Соответствующее резонансное усиление чувствительности для NA64e и LDMX происходит в диапазоне масс 0.23 ГэВ ≤ $m_{\rm MED}$ ≤ 0.32 ГэВ и 0.11 ГэВ ≤ $m_{\rm MED}$ ≤ 0.13 ГэВ, соответственно.

Положения, выносимые на защиту (2/2)

О Показано незначительное влияние моделей параметризации упругих атомных формфакторов при расчете сечения рождения медиатора на ядре в приближении Вайцзеккера-Вильямса. В частности, для текущих экспериментов NA64e и NA64µ с энергиями налетающей частицы порядка O(100) ГэВ относительная разница в сечениях для рассматриваемых моделей упругих атомных форм-факторов не превышает значения в ≤ 5 %, аналогично, в случае планируемых экспериментов LDMX и M³ с энергиями налетающей частицы порядка O(10) ГэВ, для относительной разницы справедлива оценка ≤ 30 %

Заключение

Оплучены характерные кривые реликтовой плотности темной материи для скалярного медиатора и различных типов легкой термальной темной материи. А именно, эксперимент NA64e для текущей статистики в 9.37 × 10¹¹ электронов, накопленных на мишени, позволяет исключить дираковскую и векторную легкую темную материю.

Основные публикации по теме диссертации

Результаты представленные в докладе опубликованы:

- **1** I. V. Voronchikhin and D. V. Kirpichnikov. Probing hidden spin-2 mediator of dark matter with NA64e, LDMX, NA64µ, and M3. Phys. Rev. D, 106(11):115041, 2022.
- **2** I. V. Voronchikhin and D. V. Kirpichnikov. Resonant probing spin-0 and spin-2 dark matter mediators with fixed target experiments. Phys. Rev. D, 107(11):115034, 2023
- I. Sieber, D. V. Kirpichnikov, I. V. Voronchikhin, P. Crivelli, S. N. Gninenko, M. M. Kirsanov, N. V. Krasnikov, L. Molina-Bueno, and S. K. Sekatskii. Probing hidden sectors with a muon beam: Implication of spin-0 dark matter mediators for the muon (g-2) anomaly and the validity of the Weiszacker-Williams approach. Phys. Rev. D, 108(5):056018, 2023
- I. V. Voronchikhin and D. V. Kirpichnikov. Probing scalar, Dirac, Majorana, and vector dark matter through a spin-0 electron-specific mediator at electron fixed-target experiments. Phys. Rev. D, 109(7):075012, 2024.
- I. V. Voronchikhin, D. V. Kirpichnikov, Implication of the Weizsacker-Williams approximation for the dark matter mediator production, 2024, arXiv:2409.12748 [hep-ph]

Введение	Модели медиаторов	Реликтовая плотность	Излучение медиатора	Ограничения	Заключение	Дополнительный материал
0000	0000	00000000	0000000000000	0000	0000●	00000

Спасибо за внимание!

Введение	Модели медиаторов	Реликтовая плотность	Излучение медиатора	Ограничения	Заключение	Дополнительный материал
0000	0000	00000000	0000000000000	0000	00000	●00000

Дополнительный материал

Тензорный медиатор, взаимодействие

Правила Фейнмана:

$$\begin{split} T^{(\mathrm{G}ff)}_{\mu\nu}(p_1, p_2) &= 1/4 \Big[\gamma_{\mu}(p_1 + p_2)_{\nu} + \gamma_{\nu}(p_1 + p_2)_{\mu} - 2\eta_{\mu\nu}(\not\!\!p_1 + \not\!\!p_2 - 2m_f) \Big],\\ T^{(\mathrm{GVV})}_{\mu\nu\alpha\beta}(k_1, k_2) &= m^2_{\mathrm{DM}} C_{\mu\nu\alpha\beta} + (C_{\mu\nu\alpha\beta\sigma\lambda} + C_{\nu\mu\alpha\beta\sigma\lambda}) \, k_1^{\sigma} k_2^{\lambda},\\ T^{(\mathrm{GSS})}_{\mu\nu}(q_1, q_2) &= \eta_{\mu\nu} m^2_{\mathrm{DM}} - q_1^{\alpha} q_2^{\beta} C_{\mu\nu\alpha\beta} \\ T^{(\mathrm{GII}\gamma)}_{\mu\nu\alpha} &= -e/2 \left[\eta_{\alpha\nu} \gamma_{\mu} + \eta_{\mu\alpha} \gamma_{\nu} - 2\eta_{\mu\nu} \gamma_{\alpha} \right] \end{split}$$

где обозначено:

$$C_{\mu\nu\alpha\beta} = (\eta_{\mu\alpha}\eta_{\nu\beta} + \eta_{\nu\alpha}\eta_{\mu\beta} - \eta_{\mu\nu}\eta_{\alpha\beta}),$$

$$C_{\mu\nu\alpha\beta\sigma\lambda} = \frac{1}{2}\eta_{\mu\nu}(\eta_{\beta\sigma}\eta_{\alpha\lambda} - \eta_{\sigma\lambda}\eta_{\alpha\beta}) + \eta_{\alpha\beta}\eta_{\mu\sigma}\eta_{\nu\lambda} - \eta_{\mu\beta}\eta_{\nu\sigma}\eta_{\alpha\lambda} + \eta_{\mu\alpha}(\eta_{\beta\nu}\eta_{\sigma\lambda} - \eta_{\sigma\beta}\eta_{\lambda\nu}).$$

Соответствующий пропагатор принимает вид $\mathcal{D}_{G}^{\mu\nu\alpha\beta}(p) = iP^{\mu\nu\alpha\beta}/(p^2 - m_{\text{MED}}^2)$, где для суммы по поляризациям, $P^{\mu\nu\alpha\beta}$ справедливо:

$$P^{\mu\nu\alpha\beta} = \sum_{\lambda} \varepsilon^{\mu\nu}(\boldsymbol{p},\lambda)\varepsilon^{\alpha\beta}(\boldsymbol{p},\lambda) = \frac{1}{2}\left(P^{\mu\alpha}P^{\nu\beta} + P^{\mu\beta}P^{\nu\alpha}\right) - \frac{1}{D-1-\xi}P^{\mu\nu}P^{\alpha\beta},$$

Дополнительный материал

00000

Лептонные токи с излучение медиатора

Для тензорного медиатора:

Для спин-0 и спин-1 медиаторов:

$$\mathcal{L}^{\mu} = \overline{u}(p') \left(\gamma^{\mu} \frac{\gamma_{\sigma}(p-k)^{\sigma} + m_{l}}{\widetilde{u}} C_{\mathcal{L}}^{\text{MED}} + C_{\mathcal{L}}^{\text{MED}} \frac{\gamma_{\sigma}(p'+k)^{\sigma} + m_{l}}{\widetilde{s}} \gamma^{\mu} \right) u(p),$$

где $C_{\mathcal{L}}^{\text{MED}}$ для скалярного, псевдоскалярного, векторного и аксиального типов медиаторов принимает вид, соответственно:

$$C_{\mathcal{L}}^{\mathrm{S}} = 1, \ C_{\mathcal{L}}^{\mathrm{P}} = i\gamma_5, \ C_{\mathcal{L}}^{\mathrm{V}} = \varepsilon_{\nu}^{*}(k)\gamma^{\nu}, \ C_{\mathcal{L}}^{\mathrm{A}} = \varepsilon_{\nu}^{*}(k)\gamma_5\gamma^{\nu}.$$

Дополнительный материал

00000

граничения За 000 об Дополнительный материал
 00000

Квадрат матричного элемента (тензорный медиатор)

Square of amplitude for process $l(p) + N(P_1) \rightarrow l(p') + N(P_f) + G(k)$:

 $12 \text{ Mk}^4 \dot{x}^2 \dot{\mu}^2 (-\text{Mk}^2 + t + \dot{x} + \dot{\mu})^2$ $\left(\tilde{u}\left(12\,\tilde{u}\left(P\cdot\tilde{q}\right)^{2}\,\mathrm{Mk}^{2}+\mathrm{PP}\left(-3\,\mathrm{Mk}^{4}+10\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+4\,\mathrm{Ml}^{2}\,\mathrm{I}\right)\,\mathrm{Mk}^{2}+2\,\mathrm{PP}\left(6\,\mathrm{Mk}^{4}+e^{2}\right)\,\tilde{u}+4\left(3\,\mathrm{Pp}2\,\mathrm{Mk}^{4}+2\,\mathrm{Ml}^{2}\,\mathrm{(Pp}1-\mathrm{Pp}2)\,\mathrm{Mk}^{2}+2\,\mathrm{(Pp}1-\mathrm{Pp}2)\,\mathrm{Mk}^{2}+2\,\mathrm{(Pp}1-\mathrm{Pp}2)\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,\mathrm{Mk}^{2}+2\,\mathrm{Ml}^{2}\,$ #3 Mk⁴ = 4 M² Mk² = 32 Mk⁴ / (4 Po² = PP r) Mk⁴ = 2 5/3 PP Mk⁸ = 2 PP (11 Ml² = 3 / Mk⁶ = 1/28 PP z = 48 Po² / Ml² = 6 / (2 Po1 Po2 = PP r) Mk⁴ = $6\,\tilde{u}\,(-Mk^2+t+3\,\tilde{u})\,(P\cdot\,\tilde{u}\,)^2\,Mk^2+2\,Ml^2\,t(3\,PP\,t-8\,Pp1\,Pa2)\,Mk^2+\tilde{u}\,(-21\,PP\,Mk^6+2\,PP\,(4\,Ml^2+9\,\ell)Mk^4+PP\,\ell(8\,Ml^2+7\,\ell)Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk^2+10\,Mk$ $r^{2} (4 \operatorname{Po2} (\operatorname{Po2} - 2 \operatorname{Po1}) + \operatorname{PP} n + 3 \operatorname{PP} (2 \operatorname{Mk}^{4} + t^{2}) \tilde{\mu}) + 2 (-3 \operatorname{Po2} \operatorname{Mk}^{4} + (0 (\operatorname{Po1} - \operatorname{Po2}) \operatorname{Ml}^{2} + 3 (\operatorname{Po1} + 5 \operatorname{Po2}) t^{1} \operatorname{Mk}^{4} + (0 (\operatorname{Po1} - \operatorname{Po2}) \operatorname{Ml}^{2} + 3 (\operatorname{Po1} + 5 \operatorname{Po2}) t^{1} \operatorname{Mk}^{4} + (0 (\operatorname{Po1} - \operatorname{Po2}) \operatorname{Ml}^{2} + 3 (\operatorname{Po1} + 5 \operatorname{Po2}) t^{1} \operatorname{Mk}^{4} + (0 (\operatorname{Po1} - \operatorname{Po2}) \operatorname{Ml}^{2} + 3 (\operatorname{Po1} + 5 \operatorname{Po2}) t^{1} \operatorname{Mk}^{4} + (0 (\operatorname{Po1} + \operatorname{Po2}) \operatorname{Ml}^{2} + 3 (\operatorname{Po1} + 5 \operatorname{Po2}) t^{1} \operatorname{Mk}^{4} + (0 (\operatorname{Po1} + \operatorname{Po2}) \operatorname{Ml}^{2} + 3 (\operatorname{Po1} + 5 \operatorname{Po2}) t^{1} \operatorname{Mk}^{4} + (0 (\operatorname{Po1} + \operatorname{Po2}) \operatorname{Ml}^{2} + 3 (\operatorname{Po1} + 5 \operatorname{Po2}) t^{1} \operatorname{Mk}^{4} + (0 (\operatorname{Po1} + \operatorname{Po2}) \operatorname{Ml}^{2} + 3 (\operatorname{Po1} + 5 \operatorname{Po2}) t^{1} \operatorname{Mk}^{4} + (0 (\operatorname{Po1} + \operatorname{Po2}) \operatorname{Ml}^{2} + 3 (\operatorname{Po1} + 5 \operatorname{Po2}) t^{1} \operatorname{Mk}^{4} + t^{1} \operatorname{Mk}^{4} + (0 (\operatorname{Po1} + \operatorname{Po2}) \operatorname{Ml}^{2} + 3 (\operatorname{Po1} + 5 \operatorname{Po2}) t^{1} \operatorname{Mk}^{4} + t^{1} \operatorname{Mk}^{4}$ $6\,Ml^2\,(Pp1 - Po2)\,\ell\,Mk^2 + \tilde{a}\,(3\,(3\,Pp1 - 5\,Po2)\,Mk^4 + 4\,(Pp1 - Po2)\,(2\,Ml^2 + \tilde{t})\,Mk^2 + 2\,(Pp1 - Po2)\,\ell^2 + 6\,(Pp1 - Po2)\,\ell\,\tilde{a}\,(0,\tilde{P} - \tilde{a}\,(0,\tilde{P} - \tilde{a}\,(0$ $(-2/3\,Mk^4 - 4\,Ml^2\,Mk^2 - 32\,Ml^3)(Mk^2 - 6)(PP\,t - 4\,Po2^2)\,Mk^4 + \tilde{\mu}\,(3\,PP\,Mk^3 - 2)(17\,PP\,Ml^2 + 12\,Po2\,(PD\,1 + Po2) + 9\,PP\,\ell)\,Mk^3 + 2(17\,PP\,Ml^2 + 12\,PO2\,(PD\,1 + PO2)\,\ell)\,Mk^3 + 2(17\,PP\,Ml^2 + 1$ (4(8)Pp1 - 2Pp2)Pp2 + 53 PP // MI² + 3 / (23 PP / - 4(Pp1² - 10 Pp2 Pp1 + Pp2²)))Mk⁴ + $2(64(2P02(P01 + P02) - PP(t)Ml^{4} + t(20P01^{2} + 72P02P01 + 196P02^{2} - 85PP(t)Ml^{2} + 12t^{2}(P01^{2} - 2P02P01 + 2P02^{2} - 2PP(t)Mk^{2} - 2P02P01 + 2P02^{2} - 2PP(t)Mk^{2} - 2P02P01 + 2P02^{2} - 2P02P01 + 2P$ $BMl^2 r^2 (2(Pol^2 - 4Po2Pol + Po2^2) + PP t) +$ $4((10(Pp1 - Pp2))Ml^{2} + 3(Pp1 + 6Pp2))Mk^{4} - r(14(Pp1 - Pp2))Ml^{2} + 3(2Pp1 + 7Pp2))Mk^{2} + 4Ml^{2}(Pp2 - Pp1)r^{2})(\overline{P} \cdot \overline{q}))Mk^{2} - r(14(Pp1 - Pp2))Ml^{2} + 3(2Pp1 + 7Pp2))Mk^{2} + 4Ml^{2}(Pp2 - Pp1)r^{2})(\overline{P} \cdot \overline{q}))Mk^{2} - r(14(Pp1 - Pp2))Ml^{2} + 3(2Pp1 + 7Pp2))Mk^{2} + 4Ml^{2}(Pp2 - Pp1)r^{2})(\overline{P} \cdot \overline{q}))Mk^{2} - r(14(Pp1 - Pp2))Ml^{2} + 3(2Pp1 + 7Pp2))Mk^{2} + 4Ml^{2}(Pp2 - Pp1)r^{2})(\overline{P} \cdot \overline{q}))Mk^{2} - r(14(Pp1 - Pp2))Ml^{2} + 3(2Pp1 + 7Pp2))Mk^{2} + 4Ml^{2}(Pp2 - Pp1)r^{2})(\overline{P} \cdot \overline{q}))Mk^{2} - r(14(Pp1 - Pp2))Ml^{2} + 3(2Pp1 + 7Pp2))Mk^{2} + 4Ml^{2}(Pp2 - Pp1)r^{2})(\overline{P} \cdot \overline{q}))Mk^{2} - r(14(Pp1 - Pp2))Ml^{2} + 3(2Pp1 + 7Pp2)r^{2})Mk^{2} + 4Ml^{2}(Pp2 - Pp1)r^{2})(\overline{P} \cdot \overline{q}))Mk^{2} - r(14(Pp1 - Pp2))Ml^{2} + 3(2Pp1 + 7Pp2)r^{2})Mk^{2} + 4Ml^{2}(Pp2 - Pp1)r^{2})Mk^{2} + 4Ml^{2}(Pp$ $-6\,\tilde{a}^{4}(6\,Mk^{2}(\overline{P},\overline{a},\overline{t}^{2}+4)Pp1-Pp2)\,t(\overline{P},\overline{a})+PP(2\,Mk^{4}+t^{2}))+2\,\tilde{a}^{3}(27\,PP\,Mk^{6}-6\,PP\,(Ml^{2}+4,t)\,Mk^{4}-2\,PP\,t(6\,Ml^{2}+7,t)\,Mk^{2}-6\,Ml^{2}+4,t)$ $2r^{2}\left(4(Pp)^{2}-3Pp2Pp1+Pp2^{2}\right)+PP\left(i+2(P\cdot\bar{a})\left(6Mk^{2}(Mk^{2}-i)(P\cdot\bar{a})-(Pp)-Pp2\right)\left(27Mk^{4}+4\left(3Ml^{2}+2r\right)Mk^{2}+4r^{2}\right)\right)-2r^{2}\left(4(Pp)^{2}-3Pp2Pp1+Pp2^{2}\right)+PP\left(i+2(P\cdot\bar{a})(6Mk^{2}+4r^{2})\right)+2r^{2}\left(4Mk^{2}-2k^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4Mk^{2}+4r^{2}\right)+2r^{2}\left(4$ $2.b^{2}(27 \text{ PP Mk}^{6} - 6 \text{ PP } (3 \text{ Ml}^{2} + 8 t) \text{ Mk}^{6} + 2(t)(3 \text{ PP } t - 6(\text{Po})^{2} - \text{Po} 2 \text{ Po}) + \text{Po} 2^{2}(t - 6 \text{ Ml}^{2} (4 \text{ Po} 2 t2 \text{ Po}) + \text{Po} 2) - 7 \text{ PP } t) \text{ Mk}^{6} + 2(t)(3 \text{ PP } t - 6(\text{Po})^{2} - \text{Po} 2 \text{ Po}) + \text{Po} 2^{2}(t - 6 \text{ Ml}^{2} (4 \text{ Po} 2 t2 \text{ Po}) + \text{Po} 2) - 7 \text{ PP } t) \text{ Mk}^{6} + 2(t)(3 \text{ PP } t - 6(\text{Po})^{2} - \text{Po} 2 \text{ Po}) + \text{Po} 2^{2}(t - 6 \text{ Ml}^{2} (4 \text{ Po} 2 t2 \text{ Po}) + \text{Po} 2) - 7 \text{ PP } t) \text{ Mk}^{6} + 2(t)(3 \text{ PP } t - 6(\text{Po})^{2} - \text{Po} 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po} 2 t 2 \text{ Po}) + (3 \text{ Po}$ $2 t (0 \text{ PP} t - 8 (\text{Pn})^2 + \text{Pn}^2 \text{ Pn}) + \text{Pn}^2 (0 \text{ M})^2 + 2 t (-6 \text{ Pn})^2 + 6 \text{ Pn}^2 \text{ Pn}) - 8 \text{ Pn}^2 + 5 \text{ PP} t (0 \text{ M})^2 + 2 t (-6 \text{ Pn})^2 + 6 \text{ Pn}^2 \text{ Pn})$ $(13\,Mk^4 - 4\,Ml^2\,Mk^2 - 32\,Ml^4)/Mk^2 - \ell^2(4\,Pa2^2 - PP,\ell)\,Mk^4 + 2\,\bar{n}\,(6\,Mk^2\,(P-\bar{n}\,r^2 + 4\,(Pa1 - Pa2)\,\ell(P,\bar{n}\,) + PP\,(6\,Mk^4 + \ell^2),\bar{n}\,\ell^4 + \ell^2)$ (-2) PP Mk⁶ + 2 PP (4 Ml² + 9 r) Mk⁴ + PP t/8 Ml² + 7 r) Mk² + r² (4 Pol (Pol - 2 Po2) + PP r) + $2\left(P\cdot\bar{q}\right)\left(3\left(5\,Pp1-3\,Pp2\right)\,Mk^{4}+4\left(Pp1-Pp2\right)\left(2\,Ml^{2}+i\right)\,Mk^{2}+3\left(t-Mk^{2}\right)\left(P\cdot\bar{q}\right)\,Mk^{2}+2\left(Pp1-Pp2\right)i^{2}\right)\right)\bar{u}^{3}+2\left(Pp1-Pp2\right)i^{2}\left(2\,Ml^{2}+i\right)\,Mk^{2}+2\left(Pp1-Pp2\right)i^{2}\right)$ $\left(27 \ \text{PP} \ \text{Mk}^8 - 6 \ \text{PP} \ \left(3 \ \text{Ml}^2 + 8 \ \text{i}\right) \ \text{Mk}^6 + 2 \left[t \left(13 \ \text{PP} \ t - 6 \left[\text{Pp}1^2 - \text{Pp}2 \ \text{Pp}1 + \text{Pp}2^2\right]\right) - 6 \ \text{Ml}^2 \ (4 \ \text{Pp}1 \ (\text{Pp}1 + 2 \ \text{Pp}2) - 7 \ \text{PP} \ \text{i}) \ \text{Mk}^4 + 2 \left[t \left(13 \ \text{PP} \ t - 6 \left[\text{Pp}1^2 - \text{Pp}2 \ \text{Pp}1 + \text{Pp}2^2\right]\right) - 6 \ \text{Ml}^2 \ (4 \ \text{Pp}1 \ (\text{Pp}1 + 2 \ \text{Pp}2) - 7 \ \text{PP} \ \text{i}) \ \text{Mk}^4 + 2 \left[t \left(13 \ \text{Pp}1 \ t - 6 \left[\text{Pp}1^2 - \text{Pp}2 \ \text{Pp}1 + \text{Pp}2^2\right]\right) - 6 \ \text{Ml}^2 \ (4 \ \text{Pp}1 \ t - 2 \ \text{Pp}2) - 7 \ \text{PP} \ \text{i}) \ \text{Mk}^4 + 2 \left[t \left(13 \ \text{Pp}1 \ t - 6 \left[\text{Pp}1^2 \ t - 6 \left[\text{Pp}1^2 \ t - 16 \ \text{Pp}1 \ t - 6 \left[\text{Pp}1^2 \ t - 6 \left[\text{Pp}1^2 \ t - 6 \left[\text{Pp}1^2 \ t - 16 \ t - 6 \left[\text{Pp}1^2 \ t - 6 \left[\text{Pp}1^$ 2 #//4 PP 7 - 8/Po1² + Pr2 Po1 + Pr2² || M|² + 2 #/ - 8 Po1² + 6 Po2 Po1 - 6 Po2² + 5 PP || M|² - $2(P \cdot \bar{a})[9(4Pp) - 3Pp2)Mk^4 + (5Pp) + Pp2)JMk^2 - 12J(P \cdot \bar{a})Mk^2 - 18(Pp) - Pp2)J(Ml^2 + J)Mk^2 + 4(Pp) - Pp2l^2J^2(\bar{a}^2 + J)Mk^2 + (2Pp) - Pp2l^2J^2(\bar{a}^2 + J)Mk^2 - 12J(P \cdot \bar{a})Mk^2 - 12J(P \cdot \bar{a})Mk^2 - 12J(Ml^2 + J)Mk^2 - 12J(Ml^2$ $4\,M_{1}^{2}\,(Po1^{2}-8\,Po2\,Po1+Po2^{2}+27\,PP\,\ell))\,M_{1}^{2}+24\,\ell(\tau-M_{2}^{2})\,\ell(P,\pi)^{2}\,M_{2}^{2}+2\ell-16\,(2(Po1^{2}+4\,Po2\,Po1+Po2^{2})-3\,PP\,\ell)\,M_{1}^{4}+2\ell+2\ell-16\,(2(Po1^{2}+4\,Po2\,Po1+Po2^{2})-3\,PP\,\ell)\,M_{1}^{4}+2\ell+\ell(\tau-M_{2}^{2})\,\ell(P,\pi)^{2}\,M_{2}^{2}+2\ell-16\,(2(Po1^{2}+4\,Po2\,Po1+Po2^{2})-3\,PP\,\ell)\,M_{1}^{4}+2\ell+\ell(\tau-M_{2}^{2})\,\ell(P,\pi)^{2}\,M_{2}^{2}+2\ell-16\,(2(Po1^{2}+4\,Po2\,Po1+Po2^{2})-3\,PP\,\ell)\,M_{1}^{4}+2\ell+\ell(\tau-M_{2}^{2})\,\ell(P,\pi)^{2}\,M_{2}^{2}+2\ell-16\,(2(Po1^{2}+4\,Po2\,Po1+Po2^{2})-3\,PP\,\ell)\,M_{1}^{4}+2\ell+\ell(\tau-M_{2}^{2})\,\ell(P,\pi)^{2}\,M_{2}^{2}+2\ell-16\,(2(Po1^{2}+4\,Po2\,Po1+Po2^{2})-3\,PP\,\ell)\,M_{1}^{4}+2\ell+\ell(\tau-M_{2}^{2})\,\ell(P,\pi)^{2}\,M_{2}^{2}+2\ell-16\,(2(Po1^{2}+4\,Po2\,Po1+Po2^{2})-3\,PP\,\ell)\,M_{1}^{4}+2\ell+\ell(\tau-M_{2}^{2})\,\ell(P,\pi)^{2}\,M_{2}^{2}+2\ell-16\,(2(Po1^{2}+4\,Po2\,Po1+Po2^{2})-3\,PP\,\ell)\,M_{1}^{4}+2\ell+\ell(\tau-M_{2}^{2})\,\ell(P,\pi)^{2}\,M_{2}^{2}+2\ell-16\,(2(Po1^{2}+4\,Po2\,Po1+Po2^{2})-3\,PP\,\ell)\,M_{1}^{4}+2\ell+\ell(\tau-M_{2}^{2})\,\ell(P,\pi)^{2}\,M_{2}^{2}+2\ell-16\,(\ell(Po1^{2}+4\,Po2\,Po1+Po2^{2})-3\,PP\,\ell)\,M_{2}^{2}+2\ell-16\,(\ell(Po1^{2}+4\,Po2\,Po1+Po2^{2})-3\,PP\,\ell)\,M_{2}^{2}+2\ell-16\,(\ell(Po1^{2}+4\,Po2\,Po1+Po2^{2})-3\,PP\,\ell)\,M_{2}^{2}+2\ell-16\,(\ell(Po1^{2}+4\,Po2\,Po1+Po2^{2})-3\,PP\,\ell)\,M_{2}^{2}+2\ell-16\,(\ell(Po1^{2}+4\,Po2\,Po1+Po2^{2})-3\,PP\,\ell)\,M_{2}^{2}+2\ell-16\,(\ell(Po1^{2}+4\,Po2\,Po1+Po2^{2})-3\,PP\,\ell)\,M_{2}^{2}+2\ell-16\,(\ell(Po1^{2}+4\,Po2\,Po1+Po2^{2})-3\,PP\,\ell)\,M_{2}^{2}+2\ell-16\,(\ell(Po1^{2}+4\,Po2\,Po1+Po2^{2})-3\,PP\,\ell)\,M_{2}^{2}+2\ell-16\,(\ell(Po1^{2}+4\,Po2\,Po1+Po2^{2})-3\,PP\,\ell)\,M_{2}^{2}+2\ell-16\,(\ell(Po1^{2}+4\,Po2\,Po1+Po2^{2})-3\,PP\,\ell)\,M_{2}^{2}+2\ell-16\,(\ell(Po1^{2}+4\,Po2\,Po1+Po2^{2})-3\,PP\,\ell)\,M_{2}^{2}+2\ell-16\,(\ell(Po1^{2}+4\,Po2\,Po1+Po2^{2})-3\,PP\,\ell)\,M_{2}^{2}+2\ell-16\,(\ell(Po1^{2}+4\,Po2\,Po1+Po2^{2})-3\,PP\,\ell)\,M_{2}^{2}+2\ell-16\,(\ell(Po1^{2}+4\,Po2\,Po1+Po2^{2})-3\,PP\,\ell)\,M_{2}^{2}+2\ell-16\,(\ell(Po1^{2}+4\,Po2\,Po1+Po2^{2})-3\,PP\,\ell)\,M_{2}^{2}+2\ell-16\,(\ell(Po1^{2}+4\,Po2\,Po1+Po2^{2})-3\,PP\,\ell)\,M_{2}^{2}+2\ell-16\,(\ell(Po1^{2}+4\,Po2)\,PO1+PO2^{2})+2\ell-16\,(\ell(Po1^{2}+4\,Po2)\,PO1+PO2^{2})+2\ell-16\,(\ell(Po1^{2}+4\,Po2)\,PO1+PO2^{2})+2\ell-16\,(\ell(Po1^{2}+4\,Po2)\,PO1+PO2^{2})+2\ell-16\,(\ell(Po1^{2}+4\,Po2)\,PO1+PO2^{2})+2\ell-16\,(\ell(Po1^{2}+4\,Po2)\,PO1+PO2^{2})+2\ell-16\,(\ell(Po1^{2}+4\,PO2)\,PO1+PO2^{2})+2\ell-16\,(\ell(Po1^{2}+4\,PO2$ $t(-52 \text{ Pp1}^2 - 184 \text{ Pp2} \text{ Pp1} - 52 \text{ Pp2}^2 + 85 \text{ PP} t) \text{ MI}^2 + 4 t^2 (-3 \text{ Pp1}^2 + \text{Pp2} \text{ Pp1} - 3 \text{ Pp2}^2 + 5 \text{ PP} t) \text{ MK}^2 + 10 \text{ Pp1} \text{ MK}^2 + 10 \text{ Pp1} \text{ Pp1} \text{ Pp1} + 10 \text{ Pp1} \text{ Pp1} \text{ Pp1} + 10 \text{ Pp1} \text{ Pp1} \text{ Pp1} \text{ Pp1} + 10 \text{ Pp1} \text{ Pp1} \text{ Pp1} \text{ Pp1} \text{ Pp1} \text{ Pp1} + 10 \text{ Pp1} \text{ P$ $4 t^{2} (2 (6 Pp)^{2} - 16 Pp2 Pp1 + 6 Pp2^{2} + PP t) Ml^{2} + t (-7 Pp1^{2} + 2 Pp2 Pp1 - 7 Pp2^{2} + 3 PP t)) +$ $2\,(Pp1 - Pp2)\,(10\,Mk^6 + 7\,(4\,Ml^2 - i)\,Mk^4 + (20\,Ml^2 - 23\,i)\,t\,Mk^2 + 4\,i^2\,(2\,Ml^2 + 3\,i)\,(P \cdot ij)\,\tilde{u} - 23\,i)\,(Mk^2 + 4\,i^2\,(2\,Ml^2 + 3\,i)\,(P \cdot ij)\,\tilde{u} - 23\,i)\,(Mk^2 + 4\,i^2\,(2\,Ml^2 + 3\,i)\,(P \cdot ij)\,\tilde{u} - 23\,i)\,(Mk^2 + 4\,i^2\,(2\,Ml^2 + 3\,i)\,(P \cdot ij)\,\tilde{u} - 23\,i)\,(P \cdot ij)\,(P \cdot ij)\,\tilde{u} - 23\,i)\,(P \cdot ij)\,(P \cdot ij$ $Mk^{2} (Mk^{2} - \dot{\alpha}) (6/2 Pn2/2 Pn1 + Pn2) + PP + nMk^{6} + (3/2 (4 Pn1^{2} - 8 Pn2 Pn1) + Pn2^{2}) = 13 PP + \dot{\alpha} + Ml^{2} (4 Pn2/2 Pn1 + Pn2) + 21 PP + \dot{\alpha} Mk^{6} + (3/2 Pn2) + 2(4 Pn2) + 2(4$ $2(-16)(4Pn2)(2Pn1 + Pn2) - 3PP n M1^4 + 47(-11Pn1^2 - 18Pn2Pn1 - 27Pn2^2 + 14PP f) M2^2 + 37^2(-6Pn1^2 + 2Pn2Pn1 - 8Pn2^2 + 14PP f) M2^2 + 37^2(-6Pn1^2 + 2Pn2Pn1 - 8Pn2^2 + 14PP f) M2^2 + 37^2(-6Pn1^2 + 2Pn2Pn1 - 8Pn2^2 + 14PP f) M2^2 + 37^2(-6Pn1^2 + 2Pn2Pn1 - 8Pn2^2 + 14PP f) M2^2 + 37^2(-6Pn1^2 + 2Pn2Pn1 - 8Pn2^2 + 14PP f) M2^2 + 37^2(-6Pn1^2 + 2Pn2Pn1 - 8Pn2^2 + 14PP f) M2^2 + 37^2(-6Pn1^2 + 2Pn2Pn1 - 8Pn2^2 + 14PP f) M2^2 + 37^2(-6Pn1^2 + 2Pn2Pn1 - 8Pn2^2 + 14PP f) M2^2 + 37^2(-6Pn1^2 + 2Pn2Pn1 - 8Pn2^2 + 14PP f) M2^2 + 37^2(-6Pn1^2 + 2Pn2Pn1 - 8Pn2^2 + 14PP f) M2^2 + 37^2(-6Pn1^2 + 2Pn2Pn1 - 8Pn2^2 + 14PP f) M2^2 + 37^2(-6Pn1^2 + 2Pn2Pn1 - 8Pn2^2 + 14PP f) M2^2 + 37^2(-6Pn1^2 + 2Pn2Pn1 - 8Pn2^2 + 14PP f) M2^2 + 37^2(-6Pn1^2 + 2Pn2Pn1 - 8Pn2^2 + 14PP f) M2^2 + 37^2(-6Pn1^2 + 2Pn2Pn1 - 8Pn2^2 + 14PP f) M2^2 + 37^2(-6Pn1^2 + 2Pn2Pn1 - 8Pn2^2 + 14PP f) M2^2 + 37^2(-6Pn1^2 + 2Pn2Pn1 - 8Pn2^2 + 14PP f) M2^2 + 37^2(-6Pn1^2 + 2Pn2Pn1 - 8Pn2^2 + 14PP f) M2^2 + 37^2(-6Pn1^2 + 2Pn2Pn1 - 8Pn2^2 + 14PP f) M2^2 + 37^2(-6Pn1^2 + 2Pn2Pn1 - 8Pn2^2 + 14PP f) M2^2 + 37^2(-6Pn1^2 + 2Pn2Pn1 - 8Pn2^2 + 14PP f) M2^2 + 37^2(-6Pn1^2 + 2Pn2Pn1 - 8Pn2^2 + 14PP f) M2^2 + 37^2(-6Pn1^2 + 2Pn2Pn1 - 8Pn2^2 + 14PP f) M2^2 + 37^2(-6Pn1^2 + 2Pn2^2 + 2Pn2^2 + 2Pn2^2 + 2Pn2^2 + 2Pn2^2 + 2Pn2^2 + 3Pn2^2 +$ 5 PP (i) Mk² + 2 (i - 6 Pp2 Mk² + 8 Ml² (Pp1 - Pp2) + 3 (Pp1 + 3 Pp2) (i) (P - ii) Mk² + 8 Ml² (Pp1 - Pp2)² r² (ii) r² + $Mk^{2} [Mk^{2} - t - \delta) \bar{\alpha} (2 (Mk^{2} - t) (3 (4 Po) Po2 + PP t) Mk^{4} - (4 (4 Po) Po2 + 5PP t) Mt^{2} + 3 t (5 PP t - 2 (Po1^{2} - 8 Po2 Po1 + Po2^{2}))) Mk^{2} + 2 (2 Mk^{2} - t) (3 (4 Po1 Po2 + PP t) Mk^{4} - (4 (4 Po1 Po2 + 5PP t) Mt^{2} + 3 t (5 PP t - 2 (Po1^{2} - 8 Po2 Po1 + Po2^{2}))) Mk^{2} + 2 (2 Mk^{2} - t) (3 (4 Po1 Po2 + PP t) Mk^{4} - (4 (4 Po1 Po2 + 5PP t) Mt^{2} + 3 t (5 PP t - 2 (Po1^{2} - 8 Po2 Po1 + Po2^{2}))) Mk^{4} + 2 (4 Po1 Po2 + 5PP t) Mk^{4} + 2 (4 Po1 Po2 + 5PP t) Mk^{4} + 2 (4 Po1 Po2 + 5PP t) Mk^{4} + 2 (4 Po1 Po2 + 5PP t) Mk^{4} + 2 (4 Po1 Po2 + 5PP t) Mk^{4} + 2 (4 Po1 Po2 + 5PP t) Mk^{4} + 2 (4 Po1 Po2 + 5PP t) Mk^{4} + 2 (4 Po1 Po2 + 5PP t) Mk^{4} + 2 (4 Po1 Po2 + 5PP t) Mk^{4} + 2 (4 Po1 Po2 + 5PP t) Mk^{4} + 2 (4 Po1 Po2 + 5PP t) Mk^{4} + 2 (4 Po1 Po2 + 5PP t) Mk^{4} + 2 (4 Po1 Po2 + 5PP t) Mk^{4} + 2 (4 Po1 Po2 + 5PP t) Mk^{4} + 2 (4 Po1 Po2 + 5PP t) Mk^{4} + 2 (4 Po1 Po2 + 5PP t) Mk^{4} + 2 (4 Po1 Po2 + 5PP t) Mk^{4} + 2 (4 Po1 Po2 + 5PP t) Mk^{4} + 2 (4 Po1 Po2 + 5PP t) Mk^{4} + 2 (4 Po1 Po2 + 5PP t) Mk^{4} + 2 (4 Po1 Po2 + 5PP t) Mk^{4} + 2 (4 Po1 Po2 + 5PP t) Mk^{4} + 2 (4 Po1 Po2 + 5PP t) Mk^{4} + 2 (4 Po1 Po2 + 5PP t) Mk^{4} + 2 (4 Po1 Po2 + 5PP t) Mk^{4} + 2 (4 Po1 Po2 + 5PP t) Mk^{4} + 2 (4 Po1 Po2 + 5PP t) Mk^{4} + 2 (4 Po1 Po2 + 5PP t) Mk^{4} + 2 (4 Po1 Po2 + 5PP t) Mk^{4} + 2 (4 Po1 Po2 + 5PP t) Mk^{4} + 2 (4 Po1 Po2 + 5PP t) Mk^{4} + 2 (4 Po1 Po2 + 5PP t) Mk^{4} + 2 (4 Po1 Po2 + 5PP t) Mk^{4} + 2 (4 Po1 Po2 + 5PP t) Mk^{4} + 2 (4 Po1 Po2 + 5PP t) Mk^{4} + 2 (4 Po1 Po2 + 5PP t) Mk^{4} + 2 (4 Po1 Po2 + 5PP t) Mk^{4} + 2 (4 Po1 Po2 + 5PP t) Mk^{4} + 2 (4 Po1 Po2 + 5PP t) Mk^{4} + 2 (4 Po1 Po2 + 5PP t) Mk^{4} + 2 (4 Po1 Po2 + 5PP t) Mk^{4} + 2 (4 Po1 Po2 + 5PP t) Mk^{4} + 2 (4 Po1 Po2 + 5PP t) Mk^{4} + 2 (4 Po1 Po2 + 5PP t) Mk^{4} + 2 (4 Po1 Po2 + 5PP t) Mk^{4} + 2 (4 Po1 Po2 + 5PP t) Mk^{4} + 2 (4 Po1 Po2 + 5PP t) Mk^{4} + 2 (4 Po1 Po2 + 5PP t) Mk^{4} + 2 (4 Po1 Po2 + 5PP t) Mk^{4} + 2 (4 Po1 Po2 + 5PP t) Mk^{4} + 2 (4 Po1 Po2 + 5PP t) Mk^{4} + 2 (4 Po1 Po2 + 5PP$ $4(8(PP t - 4Pp1Pp2)Ml^4 + t(-17Pp1^2 - 14Pp2Pp1 - 17Pp2^2 + 12PP t)Ml^2 + 3t^2(PP t - 2(Pp1^2 + Pp2^2))Mk^2 + 12PP t)Ml^2 + 3t^2(PP t - 2(Pp1^2 + Pp2^2))Mk^2 + 12PP t)Ml^2 + 3t^2(PP t - 2(Pp1^2 + Pp2^2))Mk^2 + 12PP t)Ml^2 + 3t^2(PP t - 2(Pp1^2 + Pp2^2))Mk^2 + 12PP t)Ml^2 + 3t^2(PP t - 2(Pp1^2 + Pp2^2))Mk^2 + 12PP t)Ml^2 + 3t^2(PP t - 2(Pp1^2 + Pp2^2))Mk^2 + 12PP t)Ml^2 + 3t^2(PP t - 2(Pp1^2 + Pp2^2))Mk^2 + 12PP t)Ml^2 + 3t^2(PP t - 2(Pp1^2 + Pp2^2))Mk^2 + 12PP t)Ml^2 + 3t^2(PP t - 2(Pp1^2 + Pp2^2))Mk^2 + 12PP t)Ml^2 + 3t^2(PP t - 2(Pp1^2 + Pp2^2))Mk^2 + 12PP t)Ml^2 + 3t^2(PP t - 2(Pp1^2 + Pp2^2))Mk^2 + 12PP t)Ml^2 + 3t^2(PP t - 2(Pp1^2 + Pp2^2))Mk^2 + 12PP t)Ml^2 + 3t^2(PP t - 2(Pp1^2 + Pp2^2))Mk^2 + 12PP t)Ml^2 + 3t^2(PP t - 2(Pp1^2 + Pp2^2))Mk^2 + 12PP t)Ml^2 + 3t^2(PP t - 2(Pp1^2 + Pp2^2))Mk^2 + 12PP t)Ml^2 + 3t^2(PP t - 2(Pp1^2 + Pp2^2))Mk^2 + 12PP t)Ml^2 + 3t^2(PP t - 2(Pp1^2 + Pp2^2))Mk^2 + 12PP t)Ml^2 + 3t^2(PP t - 2(Pp1^2 + Pp2^2))Mk^2 + 12PP t)Ml^2 + 3t^2(PP t - 2(Pp1^2 + Pp2^2))Mk^2 + 12PP t)Ml^2 + 3t^2(PP t - 2(Pp1^2 + Pp2^2))Mk^2 + 12PP t)Ml^2 + 3t^2(PP t - 2(Pp1^2 + Pp2^2))Mk^2 + 12PP t)Ml^2 + 3t^2(PP t) + 3t^2(PP t)Ml^2 + 3t^2(PP t) + 3t^2(P$ $\hat{m} = 6(4 \text{ Pol} + (Pn) + 2n2) + 2P + 6Mb^2 + 4(8(2n) + (Pn) + 2n2) + 42P + 6Mb^2 + 32(4 - Pn)^2 + 82n2 + 92(4 - 2n2) + 42P + 6Mb^4 + 62(4 - 2n2) + 62(4$ $4(22/2) Pn1 (Pn1 + Pn2) = PP + nM^4 + 27(37) Pn1^2 + 22 Pn2 Pn1 + 5 Pn2^2 = 16 PP + 1 M1^2 + 37^2 (4Pn1^2 + 2 Pn2) Pn1 + 2 Pn2^2 = 3 PP + 11 M1^2 = 2 Pn2 Pn1 + 2 Pn2^2 = 3 PP + 11 M1^2 = 2 Pn2 Pn1 + 2 Pn2^2 = 3 PP + 11 M1^2 = 2 Pn2 Pn1 + 2 Pn2^2 = 3 PP + 11 M1^2 = 2 Pn2 Pn1 + 2 Pn2^2 = 3 PP + 11 M1^2 = 2 Pn2 Pn1 + 2 Pn2^2 = 3 PP + 11 M1^2 = 2 Pn2 Pn1 + 2 Pn2^2 = 3 PP + 11 M1^2 = 2 Pn2^2 = 3 PP + 11 M1^2 = 2 Pn2^2 = 3 PP + 11 M1^2 = 3 Pn2^2 = 3 PP + 11 M1^2 = 3 Pn2^2 = 3 PP + 11 M1^2 = 3 Pn2^2 = 3 PP + 11 M1^2 = 3 Pn2^2 = 3 PP + 11 M1^2 = 3 Pn2^2 = 3 PP + 11 M1^2 = 3 Pn2^2 = 3 PP + 11 M1^2 = 3 Pn2^2 = 3 PP + 11 M1^2 = 3 Pn2^2 = 3 PP + 11 M1^2 = 3 Pn2^2 = 3$ $16 \text{ Ml}^2 (\text{Pn}1 - \text{Pn}2)^2 \dot{r}^2 + \ddot{u} (-3)\text{PP} \text{ Mk}^6 + \text{PP} (34 \text{ Ml}^2 + 9 \dot{r}) \text{ Mk}^4 + 2 (\text{Ml}^2 (48 \text{ Pn})^2 - 25 \text{ PP} \dot{r}) - 6 r (2 \text{ Pn}) \text{ Pn}2 + \text{PP} r) \text{ Mk}^2 - 2 r (1 + 1) r (1$ $8\,Ml^2\,t(PP\,t-4\,Pp)\,Pp2)+PP\,(3\,Mk^4-10\,Ml^2\,Mk^2-4\,Ml^2\,t)\,\bar{u})+4\,(t(-6\,Pp1\,Mk^2+8\,Ml^2\,(Pp2-Pp1)+3\,(3\,Pp1+Pp2)\,t)\,Mk^2+6\,Ml^2\,(Pp2-Pp1)+3\,(3\,Pp1+Pp2)\,t)\,Mk^2+10\,Ml^2\,H^2$ $\hat{u} \left[(10 (Pp2 - Pp1) Ml^{2} + 3 (4 Pp1 + Pp2) t] Mk^{2} + 4 Ml^{2} (Pp2 - Pp1) t + (3 Pp1 Mk^{2} + 2 Ml^{2} (Pp2 - Pp1)) \hat{u} \right] (\overline{P} \cdot \overline{q}) \right]$ $3 + Mk^4 (3 Mk^4 - 4 Ml^2 Mk^2 - 32 Ml^4) (4 Pp1^2 - PP t) \tilde{u}^2 (-Mk^2 + t + \tilde{u})^2)$

Квадрат матричного элемента для процесса излучения тензорного медиатора на ядре.

Введение	Модели медиаторов	Реликтовая плотность	Излучение медиатора	Ограничения	Заключение	Дополнительный материал
0000	0000	00000000	0000000000000	0000	00000	0000●

Фоновые события

Источник фона	Фон
Неправильная реконструкция импульса	0.05 ± 0.03
$K \to \mu \nu$, перед ECAL	0.010 ± 0.001
Негерметичность калориметра	< 0.01

Таблица 1: Основные фоновые события для NA64mu [1].

Источник фона	Φ_{OH}
потери или распады димюонов в мишени	0.04 ± 0.01
Распады на линии пучка	0.3 ± 0.05
Недостаточное покрытие HCAL.	0.16 ± 0.12
Пролет частиц сквозь HCAL.	< 0.01

Таблица 2: Основные фоновые события для NA64e [2].

1. First Results in the Search for Dark Sectors at NA64 with the CERN SPS High Energy Muon Beam, (NA64 Collaboration), Phys. Rev. Lett., 132, 211803, 2024, 2401.01708 [hep-ex].

2. Search for Light Dark Matter with NA64 at CERN, (NA64 Collaboration), Phys. Rev. Lett., 131, 161801, 2024, 2307.02404 [hep-ex]