БАЗА ДАННЫХ И СИСТЕМАТИКА МАГНИТНЫХ МОМЕНТОВ ЯДЕР

Л.П.Кабина, Э.М.Мбабази, И.А.Митропольский

Об авторах

Людмиле Петровне Кабиной 20 октября 2024 г. исполнилось 80 лет. Доброго здоровья!

Методы измерения ядерных магнитных моментов

 $E = \cdot$

- Атомно-лучевой магнитный резонанс (АВ)
- Атомно-лучевая лазерная спектроскопия (ABLS)
- Двойной электронно-ядерный резонанс (ENDOR)
- Электронный парамагнитный резонанс (EPR)
- Рассеяние электронов (ES)
- Молекулярно-лучевой магнитный резонанс (МВ)
- Ядерный магнитный резонанс (NMR)

Экспериментальные значения

- Авотина М.П., Золотавин А.В. Моменты основных и возбужденных состояний ядер. Атомиздат, М., 1979, ч.1 – 328 с.
- 2. Stone N.J.. Table of recommended nuclear magnetic dipole moments. IAEA, 2019, INDC(NDS)-0794 56 p.
- 3. ENSDF: Evaluated Nuclear Structure Data File. https://www.nndc.bnl.gov/ensdf/.

База данных магнитных моментов MagDa

🔜 Magn_N	Magn_Mom_Interface v.09.07.2023												
File He	lp												
MagnMom	Grap	hics											
MagnMom Graphics Database selection S - STONE E - ENSDF C S C E C SUE			The con Nuc A O Any O Odd A= A> A>	Conditions for selection of nuclides Nucides Data Eval. > Any Any Odd O Even Odd O Even A= Z = A> Z > A Z > I Z > N > I Z > N > I Z > N > I Z > N > I Z > N > I Z > N >			The conditions for selection of levels						
с s с e	Query Shife Query Where Base Base = SU E Where Nuclides Z < 20 A_Odd					Prev	view Text (Found	Ruery	Additional parame checked leve	ter of			
n	Z	A	Nucid	E.keV(S)	IPI(S)	T1/2(S)	Magn mom(S)	E.keV(E)	IPI(E)	T1/2(E)	Magn mom(E)	DataEval	
	1	1	1H	0	1/2+	stable	+2.792847351(9)	0	1/2+	STABLE	+2.792847351(28)	200601	-
	1	3	3H	0	1/2+	12.33 y	+2.978962460(14)	0	1/2+	12.32 Y	+2.978962467(26)	201512	
7	3	7	711	0	3/2-	stable	+3.256407(12)	0	3/2-	STABLE	+3.2564268(17)	200302	
	3	9	911	0	3/2-	178 ms	3.43666(6)	0	3/2-	178.3 MS	3.4391(6)	200602	
10	3	11	11LI	0	3/2-	8.75 ms	+3.6711(2)	0	3/2-	8.75 MS	3.6673(25)	201203	
16	5	11	11B	0	3/2-	stable	2.688378(1)	0	3/2-	STABLE	+2.6886489(10)	201203	
18	5	13	13B	0	3/2-	17.3 ms	+3.1778(5)	0	3/2-	17.33 MS	+3.1778(5)	200006	
20	5	15	15B	0	3/2-	9.9 ms	2.659(15)						
21	5	17	17B	0	(3/2-)	5.1 ms	2.55(2)						
1	-				4.00		a annorm	~	4.0		0.0000/0	200000	-

2558 магнитных моментов в 1246 нуклидах:

Z	Nuclid	A	N	T1/2	0T1/2	Spin/Parity	Method	µ STON	Dµ STON	μ(ENSDF 2022 r)	Dμ(ENSDF 2022 t)	μ(5a3a)	Dµ(5a3a)	ирома пиктное отношение(g)
				8	8			μ_Ν	μ_Ν	μ_N	μ_N	μ_N	μ_ N	h/2π
0	1n	1	1	613,9	0,6	1/2+	NMR, R	-1,9130427	5,00E-06	-1,9130427	5,00E-07	-1,9130427	5,00E-07	-3,8260854
1	1H	1	0	stable		1/2+	M/N, R	2,792847351	9,00E-09	2,792847351	2,80E-05	2,792847351	2,80E-05	5,585694702
	2H	2	1	stable		1+	ĸ	0,857438231	5,002-09	0,85743823	2,40E-07	0,85/43823	2,40E-07	0,85743823
	3H	3	2	3,89E+08	6,31E-05	1/2+	R	2,97896246	1,40E-08	2,978962467	2,60E-08	2,978962467	2,60E-08	5,957924934
-	she	2	1	stable		1/2+	K NAD	-2,12/62551	3,002-08	-2,12/625506	2,50E-07	-2,12/625506	2,50E-07	-4,255250612
	71	7	2	stable		3/2	NMP	3 356407	1,205-05	3 2564269	1,705-06	3 2564269	1,705-05	2 1700512
	811	8	5	0.8399	0.0009	2+	b-NMP	1 6535	2.005-05	1 65356	1,702-00	1,65356	1,702-00	0.82678
	gri	0	6	0 1783	0,0004	3/2.	b-NMP	3 43666	6.00E-05	3 4391	3.005-04	3,4391	3.005-04	2 202733333
	1111	11	8	0.00875	0.00014	3/2-	b-NMR	3.6711	2.00E-04	3.6673	0.0025	3.6673	0.0025	2.444866667
4	9Be	9	5	stable	-,	3/2-	NMR	-1,17743	5,00E-06	-1,1778	9,00E-04	-1,1778	9,00E-04	-0,7852
4	11Be	11	7	13,76	0,07	1/2+	b-NMR	-1,6816	8,00E-04	-1,6814	0,0009	-1,6814	0,0009	-3,3628
5	88	8	3	0,77	0,003	2+	b-NMR	1,0355	3,00E-04	1,0355	0,0003	1,0355	0,0003	0,51775
5	108	10	5	stable		3+	NMR	1,8004636	8,00E-07	1,80064478	6,00E-08	1,80064478	6,00E-08	0,600214927
5	118	11	6	stable		3/2-	NMR	2,688378	1,00E-06	2,6886489	1,00E-06	2,6886489	1,00E-06	1,7924326
5	12B	12	7	0,0202	0,00002	1+	b-NMR	1,00306	1,50E-04	1,00306	0,00015	1,00306	0,00015	1,00306
5	13B	13	8	0,0173	0,00017	3/2-	b-NMR	3,1778	5,00E-04	3,1778	5,00E-04	3,1778	5,00E-04	2,118533333
5	148	14	9	0,0125		2-	b-NMR	1,185	5,00E-03			1,185	5,00E-03	0,5925
5	158	15	10	0,0099		3/2-	b-NMR	2,659	1,50E-02			2,659	1,50E-02	1,772666667
5	178	16	11	0,0051		3/2-	b-NMR	2,55	2,00E-02			2,55	2,00E-02	1,7
6	90	9	3	0,1265	0,001	3/2-	b-NMR	-1,3914	5,00E-04	-1,3914	5,00E-04	-1,3914	5,00E-04	-0,9276
6	110	11	5	1222	0,84	3/2-	AB, R	-0,964	1,00E-03	-0,964	1,00E-03	-0,964	1,00E-03	-0,642666667

Распределения магнитных моментов ядер по массовому числу

Все 2558 состояний в 1246 нуклидах

Только основные состояния 906 нуклидов

Распределения магнитных моментов

основных состояний по спину

Магнитные моменты

Свободные нуклоны:

$$\mu_p = 2,792847356(23) \ \mu_N$$
$$\mu_n = -1,9130427(5) \ \mu_N$$

- ядерный магнетон Бора

Ядро как система движущихся нуклонов: $H_{int} = -\frac{1}{c} \int d^3 \quad j_{\mu} \cdot A^{\mu} = i \int d^3 \left[\rho(-,t) \Phi(-,t) - \frac{1}{c} - (-,t) \cdot (-,t) \right] i$ $\Delta \Phi - \frac{1}{c^2} \frac{\partial^2 \Phi}{\partial t^2} = -4\pi \rho$ $\Delta A - \frac{1}{c^2} \frac{\partial^2 A}{\partial t^2} = -\frac{4\pi}{c} j.$

Магнитные моменты

$$H_{\rm int} = \sum_{\lambda\mu} \left(a_{\lambda\mu} \boldsymbol{Q}_{\lambda\mu} + b_{\lambda\mu} \boldsymbol{M}_{\lambda\mu} \right)$$

$$\boldsymbol{Q}_{\lambda\mu} = \int \rho(\vec{r}) r^{\lambda} Y_{\lambda\mu}(\boldsymbol{\vartheta}, \boldsymbol{\varphi}) d^{3}r = e \sum_{i=1}^{A} \left(\frac{1}{2} - t_{3}^{(i)}\right) r_{i}^{\lambda} Y_{\lambda\mu}(\boldsymbol{\vartheta}_{i}, \boldsymbol{\varphi}_{i})$$

$$\boldsymbol{M}_{\lambda\mu} = \int \boldsymbol{\mu}(\boldsymbol{\vec{r}}) \cdot \nabla \left(\boldsymbol{r}^{\lambda} Y_{\lambda\mu}(\boldsymbol{\vartheta}, \boldsymbol{\varphi})\right) d^{3}\boldsymbol{r} = \mu_{N} \sum_{i=1}^{A} \left\{ \boldsymbol{g}_{s}^{(i)} \boldsymbol{\vec{s}}_{i} + \frac{2}{\lambda+1} \boldsymbol{g}_{l}^{(i)} \boldsymbol{\vec{l}}_{i} \right\} \cdot \nabla \left(\boldsymbol{r}_{i}^{\lambda} Y_{\lambda\mu}(\boldsymbol{\vartheta}_{i}, \boldsymbol{\varphi}_{i})\right)$$

$$\mu = \sqrt{\frac{4\pi}{3}} \langle j, m = j | |_{10} | j, m = j \rangle$$

Модель независимых частиц со сферической симметрией

$$\mu = \mu_{N} \begin{cases} \left(j - \frac{1}{2} \right) g_{l} + \frac{1}{2} g_{s}, j = l + \frac{1}{2} \\ \frac{j}{j+1} \left[\left(j + \frac{3}{2} \right) g_{l} - \frac{1}{2} g_{s} \right] j = l - \frac{1}{2} \end{cases}$$

орбиталь	четность	протоны	нейтроны
<i>I, j</i>	(-1)′	g _/ =1, g _s =5.586	<i>g_I</i> =0, <i>g_s</i> =-3.826
s 1/2	+	2.793	-1.913
p 3/2	-	3.793	-1.913
p 1/2	-	-0.264	0.638
d 5/2	+	4.793	-1.913
d 3/2	+	0.124	1.148
f 7/2	-	5.793	-1.913
f 5/2		0.862	1.366

Систематика магнитных моментов основных состояний А-нечетных ядер

протоны

нейтроны

Линии Шмидта

Магнитные моменты легчайших А-нечетных ядер в основном состоянии

одд	Z	Ν	конфигураци	СПИН		
			R			
	1	2			2.793	2.978
	2	1			-1.913	-2.127
	3	4			3.793	3.256
	3	6			3.793	3.439
	3	8			3.793	3.667
	6	7			0.638	0.702
	4	7	!		-1.913	-1.681
	5	6			3.793	2.688
	5	8			3.793	3.178

Сравнение магнитных моментов основных состояний легких (Z≤11) А-нечетных ядер

Магнитные моменты основных состояний

А-нечетных околомагических ядер

Ядро	Z	Ν	Конфигурация	СПИН		
	7	8			2.793	2.978
	8	7			0.638	0.719
	8	9			-1.913	-1.893
	9	8			4.793	4.722
	19	20			0.124	0.391
	20	19			1.148	1.021
	20	21			-1.913	-1.594
	21	20			5.793	5.430
	81	126			2.793	1.876
	82	125			0.638	0.593
	83	126			2.624	4.11

Сравнение магнитных моментов основных состояний околомагических А-нечетных

Магнитные моменты основных состояний нечетно-нечетных ядер

Магнитные моменты легких

нечетно-нечетных ядер

		Магнитные моменты, Спины состояний								
H	уклиды	«расчет»	«эксперимент»	эксперимент						
2H	1H x n	2.793-1.913=0.880 (1/2+)+(1/2+)=1+	2.793-1.913=0.880 (1/2+)+(1/2+)=1+	0.857 1+						
6Li	3H x 3He	3.793-1.913=1.880 (3/2-)+(3/2-)=3+	2.973-2.128=0.851 (1/2+)+(1/2+)=1+	0.822 1+						
8Li	7Li x 9Be	3.793-1.913=1.880 (3/2-)+(3/2-)=3+	3.256-1.177=2.079 (3/2-)+(3/2-)=3+	1.654 2+						
8B	7B x 9C	3.793-1.913=1.880 (3/2-)+(3/2-)=3+	нет данных	1.036 2+						
10B	9B x 11C	3.793-1.913=1.880 (3/2-)+(3/2-)=3+	нет данных	1.800 3+						
14N	13N x 150	-0.264+0.638=0.374 (1/2-)+(1/2-)=1+	0.322+0.719=1.041 (1/2-)+(1/2-)=1+	0.404 1+						
16N	15N x 17O	-0.264-1.913=-2.177 (1/2-)+(5/2+)=3-	-0.283-1.894=-2.177 (1/2-)+(5/2+)=3-	-2.11 1-						
20F	19F x 21Ne	4.793-1.913=2.880 (5/2+)+(5/2+)=5+	2.628-0.662=1.967 (1/2+)+(3/2+)=2+	2.093 2+						

Магнитные моменты околомагических

нечетно-нечетных ядер

		Магнитные моменты, Спины состояний							
H	уклиды	«расчет»	«эксперимент»	эксперимент					
38K	37K x 39Ca	0.124+1.148=1.272 (3/2+)+(3/2+)=3+	0.203+1.022=1.225 (3/2+)+(3/2+)=3+	1.371 3+					
40K	39K x 41Ca	0.124-1.913=-1.789 (3/2+)+(7/2-)=5-	0.391-1.595=-1.204 (3/2+)+(7/2-)=5-	-1.298 4-					
42K	41K x 43Ca	0.124-1.913=-1.789 (3/2+)+(7/2-)=5-	0.215-1.317=-1.102 (3/2+)+(7/2-)=5-	-1.139 2-					
44K	43K x 45Ca	0.124-1.913=-1.789 (3/2+)+(7/2-)=5-	0.163-1.327=-1.164 (3/2+)+(7/2-)=5-	-0.856 2-					
46K	45K x 47Ca	0.124-1.913=-1.789 (3/2+)+(7/2-)=5-	0.173-1.380=-1.207 (3/2+)+(7/2-)=5-	-1.051 2-					
46Sc	45Sc x 47Ti	5.793-1.913=3.880 (7/2-)+(7/2-)=7+	4.756-0.788=3.968 (7/2-)+(7/2-)=7+	3.03 4+					
48Sc	47Sc x 49Ti	5.793-1.913=3.880 (7/2-)+(7/2-)=7+	5.34-1.104=4.236 (7/2-)+(7/2-)=7+	3.737 6+					
50V	49V x 51Cr	5.793-1.913=3.880 (7/2-)+(7/2-)=7+	4.47-0.934=3.536 (7/2-)+(7/2-)=7+	3.346 6+					

Сравнение методов вычисления магнитных моментов нечетно-нечетных ядер

Роль деформации в ядерном магнетизме

Деформация снимает вырождение по проекции углового момента

Влияние квадрупольной деформации на магнитные моменты ядерных состояний

Зависимость магнитных моментов от деформации M (þ) I 9/2[404] 1992 1/2[440] 6 225 5 5/2[402] 3/2[411] 1/2[420] 4 3 3512 1/2[400] L 3/2[422] 97 1/2[411] 3/2[402] 223/2 2.0 2.3 E 01

Магнитные моменты деформированных ядер

49 состояний со спином 5/2+ Расчет в потенциале Нильссона с деформацией є=0.3

Магнитные моменты в цепочках изотопов

Ν

Результаты

- На основе файла ENSDF и компиляции Стоуна построена новая база данных ядерных магнитных моментов.
- Магнитные моменты ядер в основном состоянии систематизированы по массовому числу A, заряду Z и спину I состояния.
- Магнитные моменты легких и околомагических ядер расчитаны на основе одночастичной модели сферического ядра.
- Магнитные моменты нечетно-нечетных ядер оценены как сумма магнитных моментов соседних А-нечетных ядер. Несколько лучший результат получается при использовании экспериментальных значений магнитных моментов, что частично учитывает поляризационные эффекты.
- Квадрупольная деформация ограничивает область ядерных магнитных моментов шмидтовскими значениями.

Спасибо за внимание!

Mitropolsky_IA@pnpi.nrcki.ru