

Hadronic Exotics: molecular and compact scenarios

Yubing Dong

Institute of High Energy Physics (IHEP) Chinese Academy of Sciences (CAS), Beijing, China Collaboration: (Tuebingen Group & Beijing Group) At Petersburg Nuclear Physics Institute, Gatchina Oct. 31, 2024

1, Introduction: Hadronic Exotic states: (XYZ-particles: 4-quark, 5-quark states) ★interpretations: Molecular & Compact scenarios

2, Example₁: X(3872) <u>molecular scenario</u>

3, Exotic (6-quark system) • Example₂: d*(2380) <u>compact scenario</u>

4, Summary and discussion

	 <mark>.</mark>	• •
	odli	CTION
· <mark>· · ·</mark> · · ·		

Charmonium					
$c\overline{c}$	$\psi(4040)$ $\psi(3770)$	 Potential r for charmo 	nodels onium s	worked well pectroscopy	
$D\overline{D}(3730)$ $\underline{\eta'_{c}(2^{1}S_{0})}$	$\frac{\psi(2^{\bf 3}S_1)}{{\bf 3690}}$		(13 D)		
3640	$\frac{h_c(1^1P_1)}{3520}$ $\chi($	$(1^{3}P_{0}) \frac{\chi(1^{3}P_{1})}{2}$	$(1^{\circ}P_2)$	 Cornell-poter Non-relativist Or Semi-relat 	ntial tic ivistic
$\frac{\eta_c(1^1S_0)}{2980}$	$\frac{J/\psi(1^3S_0)}{3100}$			 Spin-depend velocity-depend 	ence ndent
$J^{PC} = 0^{-+}$	1+- 1	0++ 1++	2++		

J 粒子发现 50 周年研讨会 50 Years Discovery of the J Particle

会议日程 Agenda

Date and Time October 20th, 2024, 09:00-18:20 Indico https://indico.ihep.ac.cn/event/23322/

Agenda

- Morning Session, Chair: Yifang Wang (IHE)
- 09:00-09:10 Opening remarks
 Speaker: Jianguo Hou (Chinese Academy of
- 09:10-10:00 Discovery of the J particle Speaker: Samuel C.C. Ting (Massachusetts II Technology)
- 10:00-10:30 Charm and Standard Model

X, Y, Z states from Brambilla et al., 1010.5827

• BABAR, Belle, BESIII, LHCb,

 Charged charmonium spectrum

 A completely new scenario of strong QCD!

States close to open thresholds

-- The role played by

open D meson channels?

Close to DD* threshold

Recent studies on hadronic exotic structures_(4-body)

Recent studies on hadronic exotic structures b-guark

$$\begin{split} &Z_b(10610): \ M = 10608.4 \pm 2.0 \ MeV; \ \Gamma = 15.6 \pm 2.5 \ MeV \\ &Z'_b(10650): \ M = 10653.2 \pm 2.0 MeV; \ \Gamma = 14.4 \pm 3.2 \ MeV \\ &I^G(J^P) = I^+(I^+) \end{split}$$

 $(\mathbf{B}\overline{\mathbf{B}}^* + \overline{\mathbf{B}}\mathbf{B}^*), (\mathbf{B}^*\overline{\mathbf{B}}^*)$

 $\pi^{\pm} \Upsilon(nS), \ \pi^{\pm} h_b(nP)$

<u>Many new structures</u> <u>charmonium-like or bottomium-like</u>... <u>They are hadronic exotics</u>

★Near threshold
★Narrow width
★Heavy flavor

Recent studies on exotic structures_(5-body)

Pentaquark states P_c (4380)⁺, & P_c(4450)⁺

Observation of J/ψp resonances consistent with pentaquark states

Pentaquark states

 $P_{c}^{+}(4380):(M;\Gamma) = (4380 \pm 8 \pm 29; 205 \pm 18 \pm 86)MeV$ $P_{c}^{+}(4450):(M;\Gamma) = (4449.8 \pm 1.7 \pm 2.5; 39 \pm 5 \pm 19)MeV$

P _c (4450) ⁺	12σ	nys. Rev. Lett. 115, 072001 (2015)
P _c (4380) ⁺	9σ	· · · · · · · · · · · · · · · · · · ·
P _c (4450) &P _c (4380)	15σ	

Observation of $J/\psi p$ resonances consistent with pentaquark states in $\Lambda_b^0 \to J/\psi K^- p$ decays

The LHCb collaboration

Abstract

Observations of exotic structures in the $J/\psi\,p$ channel, that we refer to as pentaquark-charmonium states, in A_b^0 \rightarrow $J/\psi\,K^-p$ decays are presented. The data sample corresponds to an integrated luminosity of 3 fb^{-1} acquired with the LHCb detector from 7 and 8 TeV pp collisions. An amplitude analysis is performed on the three-body final-state that reproduces the two-body mass and angular distributions. To obtain a satisfactory fit of the structures seen in the $J/\psi\,p$ mass spectrum, it is necessary to include two Breit-Wigner amplitudes that each describe a resonant state. The significance of each of these resonances is more than 9 standard deviations. One has a mass of 4380 \pm 8 \pm 29 MeV and a width of 205 \pm 18 \pm 86 MeV, while the second is narrower, with a mass of 4449.8 \pm 1.7 \pm 2.5 MeV and a width of 39 \pm 5 \pm 19 MeV. The preferred J^P assignments are of opposite parity, with one state having spin 3/2 and the other 5/2.

Five-quark

$$\Sigma_{c}\overline{D}, \Sigma_{c}^{*}\overline{D}, \Sigma_{c}\overline{D}^{*}, \Sigma_{c}^{*}\overline{D}^{*}, p \chi_{c1}, \psi(2S)p$$

 $3^{-}/2, 5^{+}/2(J^{p}?)$
 $P_{c}(4380), P_{c}'(4449)$

Tightly bound diquark & anti-diquark

loosely bound mesonantimeson "molecule"

Interpretations of two Pc

*coupled-channle unitary approach: A series of meson-baryon dynamically generators e.g. arXiv:PRL105,232001; PRC84,015202, PRD92,094003, etl.al...

* Observations: BESIII, BelleII, BABAR, LHCb...

Hadrons observed at LHCb

Interpretations approaches/descriptions

QCD sum rule

Non-relativistic QCD

★Near threshold,
★Narrow width,
★Heavy flavor

Heavy quark effective theory

Heavy hadron chiral perturbation theory

Potential models, EFT

Lattice calculations

- Molecule, baryonium
- tetraquark
- **Hybrids**
 - Coupling channel...

2024/10/31

Interpretations approaches/descriptions-

★Two main scenarios (Molecular & Compact scenarios)

Compact System

- Diquark bounded by colored force
- $lacksymbol{\bullet}$ Typical Size ${\sim}1$ fm
- Mass near to threshold <u>accidental</u> SU(3)_f multiplets from combination of diquarks
- No (strong) hierarchy of couplings

- Formed by mesonic exchange
- Size >1 fm
- Mass near to threshold <u>natural</u>
- SU(3)_f multiplets from combinations of component hadrons
- Fall-apart decay dominant

Other possible interpretations: hadro-quarkonium, hybrid... Experimental observations essential to check all models

Hadronic molecules

- Weekly bound state of two or three hadrons
- Typical examples: Nuclei and hyper-nuclei
- Baryon-baryon bound state: M_H < M₁ + M₂
- The Molecule idea has a long history
- Voloshin, Okun (1976)
- De Rujula, George, and Glashow (1977)
 Long-range one-pion exchange (Tornqvist, ZPC1993)
 Meson-exchange models (Lohse, et al., 1990)
 Unitarized coupled channel models with chiral Lagrangians
 (Olier, et al., 1997; Jido et al., 2005,
 Gammermann et al., 08) +.....Chinese+

Hadronic molecule - an analogue to Deuteron

Heavy-light quark-antiquark pairs form heavy mesons, and the meson-antimeson pair moves at distances longer than the typical size of the meson. The mesons are interacting through exchange of light quarks and gluons, similar to nuclear force.

New exotics : X(3872)

Basics about X (3872)

- first seen in X(3872) → J/ψπ⁺π⁻ by BELLE (2003), also seen by CDF, D0 (2004) and BABAR (2005).
- $\Gamma_X \approx 3 \text{ MeV}$
- guantum numbers:

C=+ from $X(3872) \rightarrow \gamma J/\psi$, I=0 no signal in $X \rightarrow \pi \pi^0 J/\psi$

 $J^{PC} = 1^{++}$ or $J^{PC} = 2^{-+}$ from $X(3872) \rightarrow J/\psi \pi^+\pi^-$ helicity amplitude analysis

- **1** $X(3872.2 \pm 0.8)$ close to $D^0 D^{*0}$ threshold with $m_{thr} = 3871.81 \pm 0.36$ MeV;
- **S-wave** $D^0 D^{*0}$ hadron molecule favors $J^{PC} = 1^{++}$ $\mathcal{B}(B^0 \to X(3872)(K^+\pi^-)_{NR}) \times \mathcal{B}(X(3872) \to J/\psi\pi^+\pi^-) = (8.1 \pm 2.0^{+1.1}_{-1.4}) \times 10^{-6}$

charmonium interpretation disfavored, $1^{++}(2^3P_1)$ too low in mass compared to $m(2^3P_2) \approx m(Z(3930))$

Decay modes of X(3872)

Basics about X (3872), Decay Modes

- $\Gamma(X \rightarrow J/\psi \pi^+ \pi^- \pi^0)/\Gamma(X \rightarrow J/\psi \pi^+ \pi^-) = 1.0 \pm 0.4(\text{stat}) \pm 0.3(\text{syst})$ BELLE (hep-ex/0505037) isospin violating decay modes decays dominated by subthreshold decays of $\omega J/\psi$ and $\rho J/\psi$
- $\begin{array}{ll} & & & \Gamma(X \rightarrow J/\psi \gamma)/\Gamma(X \rightarrow J/\psi \pi^+ \pi^-) = 0.14 \pm 0.05 \hspace{0.1cm} (\text{Belle}); \hspace{0.1cm} 0.33 \pm 0.12 \hspace{0.1cm} (\text{BABAR}) \\ & & \text{BELLE (hep-ex/0505037), BABAR PRL 102 (2009)} \\ & & \text{large radiative decay mode !!} \end{array}$
- $\Gamma(X \rightarrow \psi(2S)\gamma)/\Gamma(X \rightarrow J/\psi\gamma) = 3.5 \pm 1.4$ BABAR, PRL 102, (2009) possible evidence for charmonium component ?

2. Example-Molecular scenario for X(3872) Phenomenological Lagrangian approach (with Tuebingen group, Prog.part.nucl.phys., 94 (2017), 282)

a, Compositeness condition:

Bound state description of hadronic molecules in QFT based on compositeness condition: Weinberg, PR1963; Salam, Nuov.Cim. 1962 Heyashi et al.,Fortsch. Phys. 1967

The coupling g_X is determined by the condition

$$Z_M = 1 - \Sigma'_M(m_M^2) = 0$$

with the derivative of the mass operator EX $\Sigma'_M(m_M^2) = g_M^2 \Pi'_M(m_M^2) = g_M^2 \frac{d\Pi_M(p^2)}{dp^2} \downarrow_{p^2 = m_M^2}$

The mass operator represented by $\widetilde{\Pi}(p^2)$

Exp. input

Characterize the finite size of the hadron & the distributions in the hadron

Gaussian-type is chosen for the function

$$\Phi_M(y^2) = \int \frac{d^4k}{(2\pi)^4} e^{-ik \cdot y} \tilde{\Phi}(-k^2), \qquad \tilde{\Phi}(-k_E^2) = \exp\left(-k_E^2/\Lambda_M^2\right)$$

Local limit $\Phi(y^2) \rightarrow \delta^4(y^2)$

Parameter: Gaussian with free size parameter Λ_{M}

Four-dimensional covariant calculation

 $\mathcal{L}_{XDD^{*}} = X_{\mu}J^{\mu}$ = $\frac{g_{X}}{\sqrt{2}}X_{\mu}(x)\int d^{4}y \left(\Phi_{X}(y^{2})\right) \left[D(x+y/2)\overline{D}^{*\mu}(x-y/2) + \overline{D}(x+y/2)D^{*\mu}(x-y/2)\right]$

FIG. 2: Diagrams contributing to the hadronic transitions $X(3872) \rightarrow \chi_{ef} + \pi^0$.

 $\mathbf{D}^{\mathbf{D}}$

 D^{-0}

 \mathbf{X}

D-D

D-0

 π^0

 π^0

 $\chi_{c0(c2)}$

 \mathbf{X}

 $\mathbf{D}^{\mathbf{D}}$

 D^{-0}

 D^{-0}

 $\mathbf{D}^{\mathbf{0}}$

 π^0

 π^0

Xet

26

2009

Strong decay(two-body, three-body)

$$\begin{aligned} |X(3872)\rangle &= \frac{Z_{D^0 D^{*0}}^{1/2}}{\sqrt{2}} (|D^0 \bar{D}^{*0}\rangle + |D^{*0} \bar{D}^0\rangle) \\ &+ \frac{Z_{D^{\pm} D^{*\mp}}^{1/2}}{\sqrt{2}} (|D^+ D^{*-}\rangle + |D^- D^{*+}\rangle) \\ &+ Z_{J_{\psi} \omega}^{1/2} |J_{\psi} \omega\rangle + Z_{J_{\psi} \rho}^{1/2} |J_{\psi} \rho\rangle, \end{aligned} \qquad \begin{aligned} & \frac{\Gamma(X \to J/\psi \pi^+ \pi^-)}{\Gamma(X \to J/\psi \pi^+ \pi^-)} &= 1.0 \pm 0.4 (\text{stat}) \pm 0.3 (\text{syst}) \\ & \text{and} \\ & \frac{\Gamma(X \to J/\psi \gamma)}{\Gamma(X \to J/\psi \pi^+ \pi^-)} &= 0.14 \pm 0.05 (\text{Belle}); \\ & 0.33 \pm 0.12 (BABAR). \end{aligned}$$

TABLE III. Properties of $X \to J_{\psi} + h$ decays. The numbers in brackets and for the ratios R_1 , R_2 from explicit values for $Z_{J_{\psi}\rho}$, $Z_{J_{\psi}\omega}$ and $\sigma = (Z_{J_{\psi}\rho}/Z_{J_{\psi}\omega})^{1/2}$ of Eq. (34).

Local case	Nonlocal case
$7.5 \times 10^3 Z_{J_{\mu}\rho}(45.0)$	$9.0 \times 10^3 Z_{J_{\pm}\rho}(54.0)$
$1.92 \times 10^3 Z_{J_{\pm}\omega}^{(78.9)}$	$1.38 \times 10^{3} Z_{J_{\pm}\omega}^{(56.6)}$
$0.32 \times 10^3 Z_{J_{\pm}\omega}^{*}(13.2)$	$0.23 \times 10^{3} Z_{J_{s}\omega}^{*}(9.4)$
$49.18 Z_{J_{,\mu}\omega}(1+1.94\sigma)^2(6.1)$	$35.19Z_{J_{,\mu}\omega}(1+2.51\sigma)^2(5.5)$
1.75	1.05
0.14	0.10
	Local case $7.5 \times 10^{3} Z_{J_{\psi}\rho}(45.0)$ $1.92 \times 10^{3} Z_{J_{\psi}\omega}(78.9)$ $0.32 \times 10^{3} Z_{J_{\psi}\omega}(13.2)$ $49.18 Z_{J_{\psi}\omega}(1 + 1.94\sigma)^{2}(6.1)$ 1.75 0.14

Local limit $\Phi(y^2) \rightarrow \delta^4(y^2)$

Radiative decays

 $X(3872) \rightarrow J/\psi, \psi(2S) + \gamma$

1: H_1H_2 hadron-loop diagrams contributing to the mass operator of the X(3872) meson.

Decay width (keV)

Approach	$\Gamma(X(3872) \rightarrow \gamma J/\psi)$
[cē], Ref. [<u>9</u>]	11
[cc], Ref. [33]	71
[cē], Ref. [33]	139
[molecule], Ref. [33]	8
	124.8 - 231.3 ($\epsilon = 0.7 \text{ MeV}$)
Our results	129.8 - 239.1 ($\epsilon = 1 \text{ MeV}$)
	138.0 - 251.4 ($\epsilon = 1.5 \text{ MeV}$)

PRD77, 094013, 2008

New measurement of LHCb-1

■
$$\Gamma(\mathbf{X} \rightarrow \psi(\mathbf{2S})\gamma)/\Gamma(\mathbf{X} \rightarrow \mathbf{J}/\psi\gamma) = 3.5 \pm 1.4$$

BABAR, PRL 102, (2009)
possible evidence for charmonium component ?

Radiative Decay X(3872) \rightarrow J/ $\psi \gamma$, $\psi' \gamma$

- X(3872) $\rightarrow J/\psi \gamma$, E_y=775 MeV VMD contributes (ρ , ω)
- X(3872) → ψ γ, E_γ=186 MeV can only proceed through light quark annihilation → expected small
 - \rightarrow BaBar measurement surprising
- New measurement by Belle Preliminary, QWG10, 711/fb

Exotic charmonium-like spectroscopy at LHCb: a study of the X(3872) and of the Z(4430)^- states

¹5₀ ³5₁ LHCb 1409.6472 To study this further, LHCb has recently measured [7] the ratio of branching fractions

$$R_{\psi\gamma} = \frac{B(X(3872) \to \psi(2S)\gamma)}{B(X(3872) \to J/\psi\gamma)},$$

as a constraint on the charmonium content of the X(3872). The branching fraction $B(X(3872) \rightarrow \psi(2S)\gamma)$ is in fact expected to be very small for a pure molecule $(O(10^{-3}))$ [8–10], but it could be enhanced for an admixture of a $D^{*0}\overline{D^0}$ molecule and charmonium. The BaBar collaboration has measured a relative large branching fraction for the X(3872) into $\psi(2S)\gamma$, with $R_{\psi\gamma} = 3.4 \pm 1.4$ [1], a result generally inconsistent with a pure molecular interpretation; in contrast, no significant signal was found by Belle [12].

$$R_{\psi\gamma} = 2.46 \pm 0.64 \pm 0.29, \gamma$$

Including of CC

Diagrams contributing to the radiative transitions $X(3872) \rightarrow J/\psi + \gamma$ and $X(3872) \rightarrow \psi(2S) + \gamma$.

Results (including) $c\overline{c}$

YBD, Faessler, Gutsche & Lyubovitskij, J. Phys. G38, 015001

Quantity	сē	DD^*	$J/\psi V$	$DD^* + J/\psi V$	Total	
$\Gamma_{J_{\psi}}$, keV	45	3.6	1.5	8	1.94	
Γ _ψ , keV	64	0.01	0	0.01	6.8	
R	1.1	3.3×10^{-3}	0	1.5×10^{-3}	$3.5 (\theta = -$	·20.2 ⁰)
<i>X</i> (387	$\langle 2 \rangle = c$	$\cos\theta \left[\frac{Z_{D^0 D^{*0}}^{1/2}}{\sqrt{2}} (D + D^- D^{*+}\rangle) + Z \right]$	$D^{0}\bar{D}^{*0}\rangle + D $ $\frac{1/2}{J_{\psi}\omega} J_{\psi}\omega\rangle + 0$	$D^{*0}\bar{D}^{0}\rangle) + \frac{Z_{D^{\pm}D^{*\mp}}^{1/2}}{\sqrt{2}}($ + $Z_{J_{\psi}\rho}^{1/2} J_{\psi}\rho\rangle] + \sin\theta$	D^+D^{*-} $ c\bar{c}\rangle.$	
T C	CC (.	,	$\mathcal{B}(\mathbf{Y}(3872)) \rightarrow \psi($	25)2)	BABAK
Interference θ , plays a c	effect, rucial i	by the admix role to underst	ture R =	$\frac{\mathcal{B}(X(3872) \to \psi)}{\mathcal{B}(X(3872) \to J)}$	$\frac{23(\gamma)}{(\psi\gamma)} = 3.5 \pm$: 1.4.
the measured	d ratio		$\bar{R_{\psi}}$	$\gamma_{\gamma} = 2.46 \pm 0.64$	4 ± 0.29 , s	LHCb

If X(3872) is admixture of D⁰ D^{*0} bound state with a c c meson : $\mathcal{BR}(X(3872) \rightarrow \psi'\gamma) / \mathcal{BR}(X(3872) \rightarrow J/\psi\gamma)$ will suggest the admixture ratio. $\sim 0.5 - 5$

17

Precise measurement of this ratio is important to understand X(3872) nature. Courtesy of V. Bhardwaj

Probing the nature of the χ_{c1} state using radiative decays

LHCb Collaboration a

arXiv:2406.17006

The radiative decay of $\chi_{c1} \rightarrow \Psi(2S)+\gamma$ are used to probe the nature of the $\chi_{c1}(3872)$ state using proton-proton collision data collected with the LHCb detector, corresponding to an integrated luminosity of 9 fb⁻¹. Using the B⁺ $\rightarrow \chi_{c1}(3872)$ K⁺ decay, the $\chi_{c1} \rightarrow \Psi(2S)+\gamma$ is observed for the first time and the ratio of its partial width to that of the $\chi_{c1} \rightarrow J/\Psi+\gamma$ decay is measured to be

 $\frac{\Gamma(\chi_{c1}(3872) \to \psi(2S)\gamma)}{\Gamma(\chi_{c1}(3872) \to J/\psi\gamma)} = 1.67 \pm 0.21 \pm 0.12 \pm 0.04$

★Near threshold
★Narrow width
★Heavy flavor

where the first uncertainty is statistical, the second systematic and the third is due to the uncertainties on the branching fractions of the $\Psi(2S)$ and J/Ψ mesons. The measured ratio makes the interpretation of the $\chi_{c1}(3872)$ state as a pure [D⁰ \overline{D}^{*0} + $\overline{D}^0 \overline{D}^{*0}$] molecule questionable and strongly indicates a sizeable compact charmonium or tetraquark component with the $\chi_{c1}(3872)$ state 33

LHCb meets Theory: Probing the nature of the X(3872) state susing radiative decays

• 17/1-007 (CERN)

Lorenzo Capriotti (Universita e INFN, Ferrara (IT)), Mengzhen Wang (Università degli Studi e INFN Milano (IT)), Vanya Belyaev (Sapienza Universita e INFN, Roma I (IT))

 $\frac{\Gamma(\chi_{c1}(3872) \rightarrow \Psi(2S)\gamma)}{\Gamma(\chi_{c1}(3872) \rightarrow J/\psi\gamma)} = 1.67 \pm 0.21 \pm 0.12 \pm 0.04$

Discussions (XYZ particles): Molecular scenarios: threshold effect narrow width large size heavy flavor

Admixture: loosely bounded + compact part

3. Compact scenario of d*(2380) dibaryon

Phenomenological quark model approach

(with Beijing group, Prog.part.nucl.phys.,131 (2023),104045)

Dibaryon: deuteron--1932

- Binding energy ~2.2MeV, or 1.1MeV/A Which has to be compared to the averaged binding energy of 8 MeV/A in Nuclei
- Its charge radius of 2.1fm (loosely bounded)
 The centers of the proton and neutron are far apart from each other than the pion exchange range r~hc/mπ ~1.4fm
- Proton-neutron (dominated),
 six-quark content (2-3% or 0.15-0.3%)+ ΔΔ(0.4%)

Beginning: (*Dyson and Xuong, 1964)

1964, when quarks were still perceived as merely mathematical entities SU(6) multiplet in 56×56 product: contains the SU(3) \bar{10} and 27;

Deuteron D_{01} and NN virtual state $D_{10} \rightarrow D_{12}(N\Delta)$ and $D_{03}(\Delta\Delta)$

 $M \sim A + B[I(I+1) + S(S+1) - 2]$ with the NN threshold mass 1878, a value B ~ 47MeV

was reached by assigning D_{12} to $pp \leftrightarrow \pi^+ d$ resonance at $\sqrt{s} = 2160 MeV$ (near the N Δ threshold)

 \rightarrow M(D₀₃)=2350MeV. This dibaryon has been the subject of several quark-based model calculations since 1980---_{by A. Gal}

					non	-strange	
Nonstrange s-wave dibaryon SU(6) predictions	Mass _{MeV}	dibaryon	Ι	S	SU(3)	legend	mass
Τ	1876	\mathcal{D}_{01}	0	1	10	deuteron	Α
DIS	1876	\mathcal{D}_{10}	1	0	27	nn	Α
	2160	\mathcal{D}_{12}	1	2	27	$N \Delta$	A + 6B
	2160	\mathcal{D}_{21}	2	1	35	$N\Delta$	A + 6B
	2350	\mathcal{D}_{03}	0	3	10	$\Delta \Delta$	A + 10B
	2350	\mathcal{D}_{30}	3	0	28	$\Delta \Delta$	A + 10B

observation: d^{*}(2380)_light flavor dibaryon

Experiments at the Jülich Cooler Synchrotron (COSY) have found <u>compelling evidence</u> for a new state in the two-baryon system, with a mass of <u>2380</u> MeV, width of ~ <u>80 MeV</u> and quantum numbers-- $I(J^P) = 0(3^+) \dots$ <u>Since 2009</u>

Characters of the d*(2380) 0(3⁺)

- d* locates between $\Delta\Delta$ and $\Delta N\pi$ thresholds
- Effect from threshold is expected to be small

* Possible interpretation of d*(2380)

- Before COSY's observation
- Consists with COSY's measurement
- **Dyson(64)** ----- symmetry analysis
- Thomas(83) ----- bag model
- Yuan(99) ----- ΔΔ+CC quark cluster model
- Jaffe(77)Swart(78)Oka(80)Maltman(85)Goldman(89)Wang(95).....

Possible interpretation of d*(2380) compact 6q dominated

▲ After COSY's observations

Quark model

J.Ping (09/14)-10 coupled channels QM Bashkanov, Brodsky, Clement (13) -- ΔΔ+CC ★ F.Huang, YBD, Zhang. (14-18)--ΔΔ+CC QM A),a compact 6q dominated exotic state

Hadronic model B), a $\Delta N\pi$ (or $D_{12}\pi$) Gal (14)--- $\Delta N\pi$ resonant state Kukulin (15,16)-- $D_{12}\pi$

> Some Other interpretations

Phys.Lett.B727 (2013) 438 **Bashkanov, Brodsky, H.Clement** $|\Psi_{d^*}\rangle = \sqrt{\frac{1}{5}} |\Delta\Delta\rangle + \sqrt{\frac{4}{5}} |6Q\rangle$ Ansatz According to M. Harvey [66] $|\Psi_{d^*}\rangle = \sqrt{\frac{4}{5}} |\Delta\Delta\rangle - \sqrt{\frac{1}{5}} |6Q\rangle.$ d* narrow width $\Lambda\Lambda$ width: $\Gamma_{\Delta\Delta} = 230 MeV$ Here $\Delta\Delta$ means the asymptotic $\Delta\Delta$ configuration and 6Q is the genuine "hidden color" six-quark configuration. The first solution denotes a S⁶ quark structure (all six quarks in the S-shell). Binding about 90Me∇ • Cluster $\Gamma_{\Delta\Delta} = 160 MeV$ •Quark degrees of freedom The observed d*(2380) must be of an unconventional origin, probably 6q structure 10/31/2024

★SU(3) chiral constituent quark model: SU(3) CCQM (Beijing Group)

PRC 60 (1999) 045203 **Quark model framework** CPC 39 (2015) 071001 SU(3) chiral QM + RGM approach_(light flavor) **Interactions:** $V_{ii} = V_{ij}^{Conf.} + V_{ij}^{OGE} + V_{ij}^{ch} + V_{ij}^{chv}$ q-q potential $V_{ii}^{ch} = \sum_{a} (V_{ii}^{s(a)} + V_{ii}^{ps(a)})_{scalar+PS}$ **Interactive Lagrangian** $\mathcal{L}_{I} = -g_{ch} \bar{\Psi} (\sum_{a}^{8} \sigma_{a} \lambda^{a} + i \sum_{a}^{8} \pi_{a} \lambda^{a} \gamma_{5}) \Psi$ $\begin{cases} \sigma_a : scalar \text{ nonet fields} \\ \pi_a : psudoscalar \text{ nonet fields} \end{cases}$

★Extended SU(3) chiral constituent quark model: SU(3)ECCQM in quark degrees of freedom

$$\mathcal{L}_{I} = -\overline{\Psi}(g_{chv}\gamma_{\mu}\sum_{a}^{8}\rho_{a}^{\mu}\lambda^{a} + \frac{f_{chv}}{2M_{N}}\sum_{a}^{8}\sigma_{\mu\nu}\partial^{\mu}\rho_{a}^{\nu}\lambda^{a})\Psi,$$

★Model parameters:

 ρ_a : vector nonet fields

could well-reproduce and match the experimental data for the N-N scatterings

--- <u>NN phase shifts;</u>

& hyper-nucleon interaction

+ deuteron properties { bingdin size

Binding Energy $(BE)_d^{Expt} = 2.22 MeV$

Values of model parameters in SU(3)CCQM and SU(3)ECCQM

	•		· / ·	
		SU(3)CCQM	SU(3)ECCQM	
			Set I	Set II
	b_u (fm)	0.5	0.45	0.45
	g _{NNπ}	13.67	13.67	13.67
	g _{ch}	2.621	2.621	2.621
	g _{chv}	0	2.351	1.973
	fatu/gatu	0	0	2/3
ıg	m_{σ} (MeV)	595	535	547
0	<i>g</i> _u	0.875	0.237	0.363
	α_{s} (g_{u}^{2})	0.766	0.056	0.132
	a_{uu}^{c} (MeV/fm ²)	46.6	44.5	39.1
V	a_{uu}^{c0} (MeV)	-42.4	-72.3	-62.9
	B _{deuteron} (MeV)	2.09	2.24	2.20

The S-Wave phase shifts of the N-N scattering in SU(3)CCQM and <u>SU(3)</u> <u>ECCQM</u>. Dotted, <u>dashed and solid</u> curves: <u>(f/g=0, 2/3)</u>.

$$\begin{array}{|c|c|c|} & & & \\ &$$

<u>Hadronization----channel wave function:</u>

Using the projection method to integrate out the internal coordinates inside the clusters (or Hadronization approach)

 $\Psi_{d^*} = |\Delta\Delta\rangle \,\chi_{\Delta\Delta}(r) + |\mathrm{CC}\rangle \,\chi_{\mathrm{CC}}(r)$ $\chi_{\Delta\Delta}(r) \equiv \langle \phi_{\Delta}(\xi_1, \xi_2) \,\phi_{\Delta}(\xi_4, \xi_5) \,|\,\Psi_{6q}\rangle \,,$ $\chi_{\mathrm{CC}}(r) \equiv \langle \phi_{\mathrm{C}}(\xi_1, \xi_2) \,\phi_{\mathrm{C}}(\xi_4, \xi_5) \,|\,\Psi_{6q}\rangle \,,$

●the two components orthogonal ★the quark exchange effect included

On d*(2380) Properties

a, Mass & wave function of d*(2380)

PRC 60 (1999) 045203 CPC 39 (2015) 071001

Binding energy (BE)		$\left(BE\right)_{d^*} \begin{cases} Expt\\ Theo \end{cases}$.~ 84MeV r.~84MeV	 I, Intrinsic character of d* quark exchange 	
I(J ^P) = 0(3 ⁺)	Ext. SU(3	3) (f/g=0)	effect of sfc large	
<u>PRC 60 (1999) 045203</u>		$\left \begin{array}{c} \Delta\Delta\\ (L=0,2) \end{array} \right $	ΔΔ-CC (L=0,2)	 2, Dynamical effect 	
d [*] Binding Energy(MeV)		62.3	83.9	(IS=03), OGE & vector meson	
Fraction	ΔΔ (L=0)	98.01	31.22	exchange induced $\Delta - \Delta$ short range	
of Wave	$\Delta\Delta$ (L=2)	1.99	0.45	interaction is attractive	
Function (%)	CC (L=0)	0	68.33	**d* deep bound	
	CC (L=2)	0	0.00	& narrow width	

The observed d*(2380) must be of

an unconventional origin

 $I(J^P) = 0(3^+)$

Reason for large component of CC (67%) Due to quark exchange effect

 $P_{36} = P_{36}^r P_{36}^{sfc} < P_{36}^{sfc} >$

<P^r₃₆> is determined by the dynamical wave function

exchange effect in spin-flavor-color spaces

intrinsic	$(\Delta \Delta)_{\rm SI=30}$	$(\Delta \Delta)_{\rm SI=30}$	(CC) _{SI=30}
	$(\Delta \Delta)_{\rm SI=30}$	(CC) _{SI=30}	(CC) _{SI=30}
_ psfc _	_1	_ 4	_ 7
36	- 9	- <u>9</u>	- 9

For d* The effective Δ - Δ interaction induced by OGE and vector meson exchange enables the short range interaction attractive. \longrightarrow Two clusters $\Delta\Delta$ closer,

> 1) d* special characters spin-flavor-color spaces exchange effect

should also large

d* might be a

6q dominant state

- 2) $\Delta\Delta$ (SI=30), Δ - Δ short range interaction is attractive

Dynamical effect (Model independent

P₃₆ Effect large, large CC component

b, Strong decay_1: $\triangle 2\pi$ decay widths

Our interpretation of d*_Compact 6q dominated exotic state

(wave function of SU(3) (CQM+ECQM))

In 2014, gave "CC" fraction of 68% in d* ($\Delta\Delta$ +CC) PRC91,064002(15), PRC94,014003(16) $I(J^P) = 0(3^+)$

	Theor.(MeV)	Expt.(MeV)
$d^* \to d\pi^+\pi^-$	16.8	16.7
$d^* \to d\pi^0 \pi^0$	9.2	10.2
$d^* \to pn\pi^+\pi^-$	20.6	21.8
$d^* \to p n \pi^0 \pi^0$	9.6	8.7
$d^* o pp \pi^0 \pi^-$	3.5	4.4
$d^* \to nn\pi^0\pi^+$	3.5	4.4
$d^* \to pn$	8.7	8.7
Total	71.9	74.9

\blacktriangle 2 π decay widths

* All partial and total widths agree with data reasonably

$$\begin{cases} \Gamma^{\text{Expt}} = 70 \sim 75 \text{MeV} \\ \Gamma^{\text{Theor.}} \approx 72 \text{MeV} \end{cases}$$

The narrow width is due to large CC component

 Compact structure: size~~0.8fm
 Components

$$|d^*>\sim \sqrt{\frac{1}{3}}|\Delta\Delta>+\sqrt{\frac{2}{3}}|CC>,$$

(3), $\Delta\Delta$ component plays of the most important role in the calculations

c, Strong decay____: Single-pion decay

 $I(J^P) = 0(3^+)$

Comparison of two interpretations

(A) <u>Compact quark model</u>: (deeply) (B) $\Delta \pi N$ three-body system:

2024/10/31

d, Form factors of d*

relative to size arXiv:1704.01253, PRD96.094001

Nucleon(s-1/2): $< N(p') \mid J_N^{\mu} \mid N(p) > = \bar{U}_N(p') \Big[F_1(Q^2) \gamma^{\mu} + i \frac{\sigma^{\mu\nu} q_{\nu}}{2M_N} F_2(Q^2) \Big] U(p),$

 $G_E(Q^2) = F_1(Q^2) - \eta F_2(Q^2), \qquad G_M(Q^2) = F_1(Q^2) + F_2(Q^2),$

Breit frame

Form factors: 2S+1

$$< N(\vec{q}/2) \mid J_N^0 \mid N(-\vec{q}/2) > = (1+\eta)^{-1/2} \chi_{s'}^+ \chi_s G_E(Q^2)$$

$$< N(\vec{q}/2) \mid \vec{J}_N \mid N(-\vec{q}/2) > = (1+\eta)^{-1/2} \chi_{s'}^+ \frac{\vec{\sigma} \times \vec{q}}{2M_N} \chi_s G_M(Q^2).$$

EM current (7 form factors, S=3) $I(J^P) = 0(3^+)$ $\mathcal{J}^{\mu} = (\epsilon^*)^{\alpha'\beta'\gamma'}(p')\mathcal{M}^{\mu}_{\alpha'\beta'\gamma',\alpha\beta\gamma}\epsilon^{\alpha\beta\gamma}(p)$

$$\begin{split} \mathcal{M}^{\mu}_{\alpha'\beta'\gamma',\alpha\beta\gamma} &= [G_1(Q^2)\mathcal{P}^{\mu}[g_{\alpha'a}(g_{\beta'\beta}g_{\gamma'\gamma} + g_{\beta'\gamma}g_{\gamma'\beta}) + \text{permutations}] \\ &+ G_2(Q^2)\mathcal{P}^{\mu}[q_{\alpha'}q_{\alpha}[g_{\beta'\beta}g_{\gamma'\gamma} + g_{\beta'\gamma}g_{\gamma'\beta}] + \text{permutations}]/(2M^2_{d^*}) \\ &+ G_3(Q^2)\mathcal{P}^{\mu}[q_{\alpha'}q_{\alpha}q_{\beta'}q_{\beta}g_{\gamma'\gamma} + \text{permutations}]/(4M^4_{d^*}) \\ &+ G_4(Q^2)\mathcal{P}^{\mu}q_{\alpha'}q_{\alpha}q_{\beta'}q_{\beta}q_{\gamma'}q_{\gamma}/(8M^6_{d^*}) + G_5(Q^2)[(g^{\mu}_{\alpha'}q_{\alpha} - g^{\mu}_{\alpha}q_{\alpha'})(g_{\beta'\beta}g_{\gamma'\gamma} + g_{\beta'\gamma}g_{\beta'\gamma}) + \text{permutations}] \\ &+ G_6(Q^2)[(g^{\mu}_{\alpha'}q_{\alpha} - g^{\mu}_{\alpha}q_{\alpha'})(q_{\beta'}q_{\beta}g_{\gamma'\gamma} + q_{\gamma'}q_{\gamma}g_{\beta'\beta} + q_{\beta'}q_{\gamma}g_{\gamma'\beta} + q_{\gamma'}q_{\beta}g_{\gamma\beta'}) + \text{permutations}]/(2M^2_{d^*}) \\ &+ G_7(Q^2)[(g^{\mu}_{\alpha'}q_{\alpha} - g^{\mu}_{\alpha}q_{\alpha'})q_{\beta'}q_{\beta}q_{\gamma'}q_{\gamma} + \text{permutations}]/(4M^4_{d^*})], \end{split}$$

Electric multi-poles

Magnetic multi-poles

$$G_l^E(Q^2) = \frac{(2M_{d^*})^l}{e} \sqrt{\frac{4\pi}{2l+1}} \frac{(2l+1)!!}{l!Q^l} \mathcal{I}_{El}(Q^2),$$

with e being the unit of charge and

$$\begin{split} \mathcal{I}_{El}(Q^2) &= \langle d^* | \sum_{i=1}^6 \int d^3 r [d^3 X] e_i j_l(Q | \vec{r}_i - \vec{R} |) Y_{l0}(\Omega_{r_i}) | d^* \rangle \\ &= 3 \langle d^* | \int d^3 r [d^3 X] [e_3 j_l(Q | \vec{r}_3 - \vec{R} |) Y_{l0}(\Omega_{\vec{r}_3 - \vec{R}}) \\ &+ e_6 j_l(Q | \vec{r}_6 - \vec{R} |) Y_{l0}(\Omega_{\vec{r}_6 - \vec{R}})] | d^* \rangle, \end{split}$$

$$\langle d^* | \rho^M(\vec{q}) | d^* \rangle = e \sum_{l=0}^{+\infty} i^l \tau^{l/2} \frac{l+1}{\tilde{C}_{2l-1}^{l-1}} G_{Ml}(Q^2) Y_{l0}(\Omega_q), \quad (10)$$

where $\rho^{M}(\vec{q})$ denotes the magnetic density of the system with $\tau = \frac{Q^2}{4M_{d^*}^2}$, and

If we only consider the quark-photon coupling, we can write the magnetic density as $\rho^M(\vec{r}) = \sum_{i=1}^6 \vec{\nabla} \cdot (\vec{j}_i(r) \times \vec{r}_i)$ with $\vec{j}_i(r)$ and \vec{r}_i being the current and position vectors for the *i*th quark in the coordinate space, and $\rho^M(\vec{q}) =$ $\sum_{i=1}^6 \vec{\nabla} \cdot [(e_i \vec{\sigma}_i \times \vec{q}) \times \vec{q}] = 2 \sum_{i=1}^6 e_i \vec{\sigma}_i \cdot \vec{q}$ with $\vec{\sigma}_i$, e_i , and \vec{q} being the Pauli matrix, the charge for the *i*th quark and the transferred momentum, respectively.

(a) Compact quark model

(b) $\pi\Delta N$ three-body system

d*(2380) charge distributions

Discussions: for d*(2380)

- ★ ① Our SU(3)(CCQM & ECCQM) approaches, in quark degrees of freedom, are employed to study the mass, and wave function of [d*(2380), 3⁺]. These approaches could well reproduce the experimental data for the N-N scatterings as well as the properties of deuteron and hyperon-nucleon interaction, and the model parameters are fixed.
- ★ ② Within the approaches and by employing the same set of parameters, the mass of d*(2380) is well-reproduced and its wave function is expressed as $\Delta\Delta$ +CC, hidden color parts dominated.

 $|d^* > \sim \sqrt{\frac{1}{3}} |\Delta \Delta > + \sqrt{\frac{2}{3}} |CC >, \qquad \begin{array}{l} \Delta : \quad (0s)^3 \, [3]_{\rm orb}, S = 3/2, I = 3/2, C = (00), \\ C : \quad (0s)^3 \, [3]_{\rm orb}, S = 3/2, I = 1/2, C = (11), \end{array}$ novel

★ ③ It is a compact 6-quark state with some portions |∆∆> and |cc> components, due to its spin and quark exchange effect.

- ★ ④ We also obtained channel wave function for the two channels and they are orthogonal. Then, the channel wave function are employed to calculate the strong decays of d*(2380). Double pion decays are well reproduced comparing the available measurement, and the single pion decay is expected to be much small.
- ★ (5) The electromagnetic form factors of d*(2380) are also calculated and its charge radius, magnetic moments, quadupole moments are obtained. The scenarios of compact and loosely bounded are compared.
- ★ ⑥ More experimental information of this dibaryon is necessary to confirm its existence. Some possible observation is predicted.

Suggest other possible experimental searchings for it

and study for possible dibaryon signals (non-strange): (1) Process (Mainz, Jlab., ELPH, BGOOD): $\gamma + d$ (2) Process (Belle), Y-decays: $\begin{bmatrix} \gamma \to \overline{d}^* + X \\ BR(\Upsilon \to \overline{d} + X)_{e,*} \sim 2.9 \times 10^{-5} \end{bmatrix}$ (3) Processes (BEPC, Babar, Belle?): $e^+ + e^- \to \overline{d}^* + p + n$ (4) Processes (Panda): $p + \overline{p} \to \overline{d}^* d^* + X$

Theoretical study of other dibaryon candidates:

$$[\bigstar d_{(S=3,I=0)}^{*}(2380): |d^{*} > \sqrt{\frac{1}{3}} |\Delta \Delta > + \sqrt{\frac{2}{3}} |CC >, d_{(S=0,I=3)}^{*}(???)],$$

$$[D_{(S=2,I=1)}, D_{(S=1,I=2)}], [Roper+\Delta]_{Wasa@Cosy}$$

If the d* is further confirmed by experiments, Our interpretation looks <u>reasonable</u>. Thus, it might be a state with 6q structure dominant. Moreover, the more information about the short range interaction is expected.

Preliminary !

Dibaryon with Highest Charm Number near Unitarity from Lattice QCD

Yan Lyu, Hui Tong, Takuya Sugiura, Sinya Aoki, Takumi Doi, Tetsuo Hatsuda, Jie Meng, and Takaya Miyamoto Phys. Rev. Lett. **127**, 072003 – Published 11 August 2021

チャームダイオメガ(ΩcccΩccc)のイメージ図

Some others: deuteron-like (shallow bounded) heavy dibaryons, PRL123,162003

4. Summaries and Discussions

- The study of XYZ hadronic exotics and other possible dibaryons (multiquark) structures are essential for our understanding of hadron structures.
- It opens a window of the interpretations of those exotics.
- No definite conclusion has been drawn for the structures of those exotics. Some possible explanations: molecular scenario or compact picture seem to be successful for some sophisticated structures and for structures.
- More efforts are still needed in both theoretical study and experimental measurements.

Thanks for your attention!

PRL 98, 012001 (2007)

PHYSICAL REVIEW LETTERS

week ending 5 JANUARY 2007

Observation of a Charmed Baryon Decaying to $D^0 p$ at a Mass Near 2.94 GeV/ c^2

(BABAR Collaboration)

The results for the $\Lambda_c(2940)^+$ baryon are

 $m = [2939.8 \pm 1.3(\text{stat}) \pm 1.0(\text{syst})] \text{ MeV}/c^2,$ $\Gamma = [17.5 \pm 5.2(\text{stat}) \pm 5.9(\text{syst})] \text{ MeV}.$

For the $\Lambda_c(2880)^+$ baryon the results are

 $m = [2881.9 \pm 0.1(\text{stat}) \pm 0.5(\text{syst})] \text{ MeV}/c^2,$ $\Gamma = [5.8 \pm 1.5(\text{stat}) \pm 1.1(\text{syst})] \text{ MeV}.$