Подготовка эксперимента по комптоновскому рассеянию на ядрах водорода и гелия с помощью активной мишени

НИЦ КИ – ПИЯФ, ОФВЭ, ЛБФ

Арутюнова Анастасия

Семинар ОФВЭ, 24.09.2024

Схема эксперимента

Поляризуемость нуклона – одно из фундаментальных свойств нуклона, которое характеризует степень его деформации под действием внешнего электромагнитного поля [1].

Поляризуемость можно определить **при измерении зависимостей дифференциальных** сечений комптоновского рассеяния от энергии и угла рассеяния фотонов θ_{γ}

Схема эксперимента:

Преимущество: Камера позволяет определить энергию, угол протона отдачи и точку взаимодействия, возникающего в объеме между катодом и сеткой.

Рис. 1 Схема планируемого эксперимента по измерению поляризуемости нуклонов

Данные по поляризуемости протона

* Таблица со всеми данными на сл. 17

Рис. 2 Значения α и β в различных экспериментах

MAMI (2001)
$$\alpha = 11.9 \pm 0.5 \pm 1.3$$
 $\beta = 1.2 \pm 0.7 \pm 0.3$ PDG (2010) $\alpha = 12.0 \pm 0.6$ $\beta = 1.9 \pm 0.5$ PDG (2022) $\alpha = 11.2 \pm 0.4$ $\beta = 2.5 \pm 0.4$ MAMI (2022) $\alpha = 10.99 \pm 0.16 \pm 0.60$ $\beta = 3.14 \pm 0.21 \pm 0.47$

Задачи

Изучение статистических и систематических ошибок в определении электрической (α) и магнитной (β) поляризуемостей;

Исследование характеристик активной мишени (ионизационная камера):

- Исследование электроники;
- Исследование энергетических спектров;
- Проверка энергетической калибровки;
- Измерение скорости дрейфа электронов;
- Определение относительной энергии образования электрон-ионных пар.

LET Theorem

LET позволяет точно рассчитать сечения рассеяния для энергий меньше 100 МэВ [2]:

$$(\frac{d\sigma}{d\Omega})_{LET} = (\frac{d\sigma}{d\Omega})_{Point} - \rho$$

$$\begin{aligned} (\frac{d\sigma}{d\Omega})_{Point} &= \frac{1}{2} (\frac{e}{m})^2 (\frac{E_{\gamma}}{E_{\gamma'}})^2 (1 + \cos^2\theta_{\gamma} + \frac{E_{\gamma}E_{\gamma'}}{m^2} \times ((1 - \cos\theta_{\gamma})^2 + a_0 + a_1\cos\theta_{\gamma} + a_2\cos^2\theta_{\gamma})) \end{aligned}$$

$$ho = rac{e^2}{m} (rac{E_{\gamma}}{E_{\gamma'}})^2 (E_{\gamma} E_{\gamma'}) (rac{lpha + eta}{2} (1 + cos heta_{\gamma})^2 + rac{lpha - eta}{2} (1 - cos heta_{\gamma})^2) = rac{a_0 = 2k + rac{9}{2}k^2 + 3k^3 + rac{3}{4}k^4}{a_1 = -4k - 5k^2 - 2k^3} = -4k - 5k^2 - 2k^3$$

Параметры *a*_{0,1,2} задаются с помощью зависимости от аномального магнитного момента

Расчет статистических и систематических ошибок

- 1. По формуле LET с шагом 4 МэВ рассчитываем значение теоретического дифференциального сечений;
- 2. По нормальному закону с ошибкой, зависящей от энергии, «разбрасываем» экспериментальное значение

$$\sigma_i = \sigma \cdot \sqrt{\frac{E_i}{E_f}}, \quad \sigma = 0.3\%, \quad E_f = 100 \text{ M} \Rightarrow \text{B}, \quad E_i = E_{\gamma} = 20 \dots 100 \text{ M} \Rightarrow \text{B}$$

- 3. С помощью метода Левенберга-Марквардта (МНК) и с введением параметра нормировки определяем α и β;
- 4. Для рассмотрения ошибок по углу и энергии изменяем их значения и проводим сравнение.

Ошибки, рассчитанные для предлагаемой установки

	$\Delta lpha \cdot 10^{-4} \ { m \phi} { m m}^3$	$\Deltaeta \cdot 10^{-4} \mathrm{\phi} \mathrm{m}^3$
Ошибка при статистике 8 · 10 ⁶ событий	0.07	0.11
Отклонение при ошибке по углу 0.3°	0.05	0.11
Отклонение при ошибке по энергии 1.4 МэВ	0.07	0.07
Отклонение при ошибке в измерении энергии 2%	0.007	0.008

Mainz, 2022: $\Delta \alpha = [0.16_{stat} \pm 0.60_{syst+mod}] \cdot 10^{-4} \, \phi \mathrm{M}^3$ Активная мишень: $\Delta \alpha = [0.07_{stat} \pm 0.11_{syst}] \cdot 10^{-4} \, \phi \mathrm{M}^3$ $\Delta \beta = [0.21_{stat} \pm 0.47_{syst+mod}] \cdot 10^{-4} \, \phi \mathrm{M}^3$ $\Delta \beta = [0.11_{stat} \pm 0.15_{syst}] \cdot 10^{-4} \, \phi \mathrm{M}^3$

=> новый метод измерения поляризуемости протона показывает большую точность при проведении эксперимента

Ионизационные камеры

COMPTON

ACTAM

- 06
- Рабочее давление 100 бар •
- Объем 10 л
 - Рабочее давление 25 бар

ACTAF2

- Объем 80 л
- Рабочее давление 10 бар

Объем 10 л

•

•

Свойства ИК ACTAF2

- Рабочий газ: *He*, *Ar*, *H*₂, *D*₂, *CH*₄;
- Давление: 0.1 10 бар;
- Толщина А1 стенок 8 мм;
- Высокая (~100%) эффективность регистрации с энергетическим разрешением 20-30 кэВ;
- Регистрация частиц отдачи в энергетическом диапазоне 0.3-15 МэВ;
- Возможность регистрации различных типов частиц отдачи: (*p*, *d*, *H*₃, *He*₃, ...);
- Восстановление координаты точки взаимодействия с точностью 0.5 мм;
- Определение полярного угла частицы отдачи с точностью порядка 10 мрад;
- Определение азимутального угла ($\sigma \approx 6^{\circ}$);
- Чтение сигнала со всех анодов и катода;
- Временное разрешение 40-60 нс.

Стенд для изучения электроники

Задачи:

- Калибровка усилителя;
- Анализ энергетического разрешения;
- Относительная калибровка каналов усилителя.

Рис. 5 Стенд для исследования электроники

Пример регистрации трека протона в ионизационной камере

Благодаря аксиальносимметричной камере мы регистрируем частицы отдачи во всех направлениях. После обработки сигнала у нас есть данные о времени, длительности, энергии, амплитуде и точке взаимодействия.

Рис. 6 Последовательность сигналов от трека частицы отдачи (протона (GSI, 2014, пучок Ni-58 на водороде, 10 атм))

Исследуемые сигналы от альфа-частиц (Аm-241, 5.5 МэВ)

Задачи:

- Проверка энергетической калибровки;
- Определение относительной энергии ионизации: Ar $w = 27.7 \ 3B$ He + 5%N₂ $w = 36 \ 3B$

Измерение скорости дрейфа электронов

Альфа-источник расположен на катоде (Рис. 11). Разность времен прихода сигналов с катоде и анода позволяет измерить скорость дрейфа (Рис. 10 и 12).

Рис. 10 Сигналы от альфа частиц на катоде (синий) и 3-х анодах, записанные на АЦП

Рис. 11 Иллюстрация трека от альфа частицы и геометрические параметры анодной плоскости

Исследование скорости дрейфа электронов

От напряжения

N⁰	Uc, кВ	Е/р, В/мм см Нд	V, см/мкс
1	0.6	0.1	0.56
2	0.9	0.14	0.83
3	1.2	0.2	1.1
4	1.5	0.25	1.44
5	2.1	0.35	1.5

N⁰	Uc, кВ	Е/р, В/мм см Нg	V, см/мкс
1	1.7	0.053	0.25
2	2.0	0.064	0.27
3	2.3	0.075	0.28

Значения в Не хорошо совпадают с литературой.

В Ar при давлении 0.34 атм с течением времени из стенок камеры выделялся воздух (~3%) и наблюдалось значительное повышение скорости дрейфа электронов (в чистом аргоне при E/p = 0.2: V = 0.28 см/мкс). При высоком давлении значения совпадают. При давлении 1.2 атм и E/p = 0.1 скорость V = 0.28 см/мкс

Nº	Uc, кВ	Е/р, В/мм см Нg	V, см/мкс
1	2.3	0.075	0.36
2	3	0.096	0.39
3	3.6	0.12	0.41

Энергетические спектры

Задача:

• Изучение эффектов прилипания – процесса захвата электрона атомом или молекулой

Ar

Заключение и планы

Сделано:

- 1. Выполнено исследование систематических и статистических ошибок. Результат исследования показал преимущество экспериментов с использованием активной мишени в определении поляризуемости;
- 2. Было выполнено исследование электроники с помощью генератора импульсов;
- 3. Измерены скорости дрейфа электронов в Ar, He и He+5%N₂. В Ar обнаружен эффект увеличения скорости дрейфа (в 4 раза) при наличии 3% воздуха. В чистых аргоне и гелии результаты измерения практически совпадают с известными данными;
- 4. Была проведена калибровка энергетической шкалы с помощью альфа-источника;
- 5. Были измерены относительные энергии на образование электрон-ионных пар (w) в Ar: w = 27.7 эВ и He+5%N₂: w = 36 эB;
- 6. Был исследован эффект прилипания к кислороду в различных газах.

Планы подготовки эксперимента по комптоновскому рассеянию 2024/2025:

- 1. Продолжить исследование электроники для активных мишеней (калибровка усилителей);
- 2. Продолжить исследование характеристик активных мишеней (ACTAF2, COMPTON) (выполнить измерения на водороде);
- 3. Подготовить проект по созданию гамма-детектора и начать подготовку программ по моделированию гамма-детектора.

Данные по поляризуемости протона

	α ,· $10^{-4} fm^3$	eta ,· $10^{-4} fm^3$	Ref
1	9.0 ± 2.0	2.0 ± 2.0	V.I. Goldansky, Elastic γ-p scattering at 40 to 70 MeV and polarizability of the proton. Nuclear Physics, 18:473–491, 1960.
2	10.7 ± 1.1	-0.7 ± 1.6	P. Baranov, New experimental data on the proton electromagnetic polarizabilities. Physics Letters B, 52(1):122–124, 1974.
3	$10.9 \pm 2.2 \pm 1.3$	$3.3 \pm 2.2 \pm 1.3$	F. J. Federspiel, Proton compton effect: A measurement of the electric and magnetic polarizabilities of the proton. Phys. Rev. Lett., 67:1511– 1514, Sep 1991.
4	$10.6 \pm 1.22 \pm 1.05$	$3.6 \pm 1.22 \pm 1.05$	A. Zieger, 180° compton scattering by the proton below the pion threshold. Physics Letters B, 278(1):34–38, 1992
5	$9.8 \pm 0.4 \pm 1.1$	$4.4 \pm 0.4 \pm 1.1$	E. L. Hallin, Compton scattering from the proton. Phys. Rev. C, 48:1497– 1507, Oct 1993.
6	$12.5 \pm 0.6 \pm 0.7 \pm 0.5$	$1.7 \pm 0.6 \pm 0.7 \pm 0.5$	B. E. MacGibbon, Measurement of the electric and magnetic polarizabilities of the proton. Phys. Rev. C, 52:2097–2109, Oct 1995.
7	$11.9 \pm 0.5 \pm 1.3 \pm 0.3$	$1.2 \pm 0.7 \pm 0.3 \pm 0.4$	V. Leon, Low-energy compton scattering and the polarizabilities of the proton. The European Physical Journal A, 10:207–215, 04 2001.
8	$10.99 \pm 0.16 \pm 0.47 \pm 0.17 \pm 0.34$	$3.14 \pm 0.21 \pm 0.24 \pm 0.20 \pm 0.35$	P.P. Martel, Measurement of compton scattering at mami for the extraction of the electric and magnetic polarizabilities of the proton. Phys. Rev. Lett., 128:132503, Apr 2022
9	11.2 ± 0.4	2.5 ± 0.4	R. L. Workman and Others. Review of Particle Physics. PTEP, 2022:083C01, 2022.

1. O. Yevetska, S. Watzlawik, J. Ahrens, G.D. Alkhazov, V.P. Chizhov, E.M. Maev et al., Nuclear instruments and methods, A 618, 160-167 (2010) "New experimental method for investigation of the nucleon polarizabilities"

2. Vorobyov, A.A.; Korolev, G.A.; Schegelsky, V.A.; Solyakin, G.Ye.; Sokolov, G.L.; Zalite, Yu.K., Nuclear instruments and methods 119 (1974) 509-519 "A method for studies of small-angle hadron-proton elastic scattering in the coulomb interference region" (AN SSSR, Leningrad. Inst. Yadernoj Fiziki)

Поляризуемость нуклона

электрическая поляризуемость

Зависимость диф. сечения от параметров α и β

Ошибки

	$\Delta lpha \cdot 10^{-4} \mathrm{\phi} \mathrm{m}^3$	$\Deltaeta \cdot 10^{-4} \ { m \phi} { m M}^3$	
Влияние ошибки в определении потока фотонов 0.25%	0.07	0.064	
Фон	0.05	0.11	

Скорость дрейфа в Ar в зависимости от отношения E/p

L.G. Christophorou, D.L. McCorkle, D.V. Maxey, J.G. Carter, Fast gas mixtures for gas-filled particle detectors, Nuclear Instruments and Methods, Volume 163, Issue 1, 1979, Pages 141-149, ISSN 0029-554X, https://doi.org/10.1016/0029-554X(79)90042-9.

Химический анализ рабочих газов

Газ	Дата пробы	Результат
Ar, 0.34 атм	13.02.2023	$0.6\% O_2, 2.3\% N_2, 0.45\% He$
Ar, 0.34 атм	10.04.2023	$0.6\% O_2, 2.3\% N_2$
Ar, 1.22 атм	14.04.2023	$10 \ ppm \ O_2, 40 \ ppm \ N_2$
Ar, 0.34 атм	20.04.2023	$0.4\% O_2, 1.7\% N_2$
Не, 1.71 атм	27.04.2023	$600 \ ppm \ Ar, 30 \ ppm \ O_2, 120 \ ppm \ N_2$
Не, 1.71 атм	02.05.2023	$600 \ ppm \ Ar, 30 \ ppm \ O_2, 120 \ ppm \ N_2$
$He + 5\% N_2, 1.71$ атм	17.05.2023	$4.7\%N_2,900 \ ppm \ Ar,30 \ ppm \ O_2$

Сигнал, записанный с генератора. t_н – время начала сигнала, t_к – время конца сигнала, Е - площадь сигнала, пропорциональная энергии.

1) differential cross section, $d\sigma(E_{\gamma},\theta_{\gamma})/d\Omega \sim 12$ nb/sr (rough average for E_{γ} from 20 to 100 MeV and $\theta_{\gamma} = 90^{\circ}$ and 130°).

2) photon beam intensity, $N_{\gamma}(E_{\gamma}) = 2 \cdot 10^9 \text{ MeV}^{-1} \text{ s}^{-1}$, at $E_{\gamma} = 60 \text{ MeV}$ and $N_{\gamma} = 2 \cdot 10^{11} \text{ s}^{-1}$ in the photon energy range of 20-100 MeV (taken to be a S-DALINAC test experiment value assuming an electron energy of 110 MeV at a beam current of 50 μ A). 3) target thickness t = $4 \cdot 10^{22}$ cm⁻², at p = 75 bar of the gas (H₂) pressure and for x =10 cm (linear thickness of the gas).

4) solid angle, $\Delta \Omega = 25$ msr, for NaI entrance collimator diameter of 12 cm and NaI distance from the front face to the IC target of 70 cm.

5) $\Delta E_{\nu} = 4$ MeV is the energy bin and $\varepsilon_{det} \sim 1$ for NaI detector.

Using these values in the above expression for the count rate, we obtain a rate of

~ 400 counts/hour at $E_{\gamma} = 60$ MeV and $\Delta E_{\gamma} = 4$ MeV.

