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Some history

First experiments with solid Hydrogen - evidence of relaxation
In para- and ortho-hydrogen [E.P. Krasnoperov group, 1984]
Explanation — a molecular ion H,u* formation

1) a*“frozen” ion — gives relaxation in para-hydrogen, bad
agreement with experiments,

2) rotational diffusion — incorrect temperature dependence,

3) non-thermalized ion — spin-rotation interaction exists

In ortho- and para-ions, relaxation induced by interactions

of vibrations and rotations of the ion with lattice

(spin-phonon interaction). The ion forms large clusters.

Suggestion of experiments with solid Helium for evidence of
similar molecular ions He,u* and Hep*.



Muonium formation and temperature dependence of a relaxation
rate in liquid Helium (*He) was observed [E.P. Krasnoperov’s
group, 1985] and only diamagnetic component without relaxation
in solid “He was observed. If ions He,u* or Heu* form a relaxation
mechanism due to spin-rotation interaction similar to that in solid
Hydrogen must exist.

Question: do molecular 1ons form in Helium?

If not — what is the reason? What is the difference from Hydrogen?
Molecular 1ons He,u* and Heu* have sufficiently large binding
energy 1.9 eV and 0.47 eV respectively.

New direction — interaction with track and its role for Muonium
formation.

Evidence of a strong temperature dependence of a diamagnetic
component relaxation in solid *He for T<1 K [E.P.Krasnoperov
et.al., 1994]
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Temperature dependence of a
relaxation rate of a diamagnetic
component in solid 3He
[E.P.Krasnoperov et.al., 1996]
for different specific volume
(curves 1, 2 and 4) and in pure
“He (curve 3).

Maximum value Is more higher
and minimum is more smaller
than the second moment for
Inhomogeneous static dipole-
dipole interaction
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Temperature dependence of a
relaxation rate of a diamagnetic
component in solid 3He
[E.P.Krasnoperov et.al., 1997] for
different concentration of “He.

The value of dipole-dipole
Interaction in the 1on He,u* Qis
of the order of the maximum
value of a relaxation rate.

Molecular ion He,u* or Hep*
must be formed in solid Helium.

First suggestion — the molecular
lon He,u* is “frozen” and spin-
rotation interaction doesn’t exist.
It gives incorrect dependence of a

relaxation rate on an external
magnetic field.



If the molecular ions formed they are not “frozen”.
Are they thermalized?

Coulomb interactions of ions with the crystal
lattice

The binding energy of the ions Heyp ™ and Hep™ is too large and just after
formation the ions must be at high levels of a vibrational-rotational spectrum
with the excitation energy € ~ 1 eV. This means that the ions have large
vibrational v and rotational K numbers at the initial state. There are no
interactions exceeding this value in quantum crystal. Therefore, freezing of
the ions is not obvious.

Thermalization of the excited ions is possible owing to interactions of vi-
brational and rotational motions with a lattice, when a phonon is radiated.
This process is possible as a result of radial phonon radiation, because an
energy of acoustic phonons is too small. Interaction of an ion with lattice is
determined by an energy of its electric multipole moments with inhomoge-
neous electric field created by polarized Helium atoms. We consider that an
expansion of the interaction on multipoles is correct.



Let’s examine at first the ion Heu™, which possesses both quadrupole
and dipole moments relatively to its center of masses. The dipole moment is
negligibly small: d ~ 0.3-102¢Rg, where Ry ~ 0.93 A is a linear dimension of
the ion. Components of the quadrupole moment are equal to Q| = —2Q | =
@ = eR? respectively. The ion Heopu™ possesses only quadrupole moment two
times more than the ion Heu™. The characteristic value of the interaction
energy of a quadrupole moment is equal to

bael)

Vo ~

~ 3-107%€V. (1)

Here o = 1.383a; is the Helium atom polarizability and ag is the Bohr radius.

This value is less than a quantum of a rotation energy of the ion Hepu™
and two order less than its quantum of a vibration energy. The value (1)
is of the order of a quantum of a rotation energy of the ion He,py™ and two
order less of its quantum of a vibration energy. Thus we can see, that the
interaction of the electric quadrupole moment with the lattice couldn’t freeze
the exited ions both Heu™ and He,u™. Nevertheless, this interaction is very
important for the rotation levels with K = 1.



The interaction energy of the quadrupole moment of an ion with the
inhomogeneous electric field induced by a polarized Helium atom depends
on the orientation of the ion and is equal to

2ae

Vo = —5Qas (3%”_5 - 5aﬁ)- (2)

We took into account, that polarized Helium atoms of a lattice are oriented
along the radius-vector and the property of the tensor Q.o = 0.



Relaxation of rotational states

Let’s consider at first relaxation of rotational states. Well known, that the
interaction (2) is correspondent to the operator describing an interaction of
a rotation moment with electrostatic field of a crystal (see e.g. [10]):

1 2ae

Cha (2K — 1)(2K + 3) ®

3/~ N
Qus (5 (KQKﬁ + Kﬁf{a) — Sas K (K + 1)) .
(3)

The operator (3) doesn’t depend on time, conserves energy of the system
and cannot give rise a relaxation. But we can derive from it an operator
describing interactions of an ions rotation with phonons. Previously it was
shown [5, 9], that positively charged ion strongly distorts a lattice and hence
a phonon spectrum. As a result, in the crystal only radial phonons could be
excited. We can get the operator describing interactions of rotations of an
ion with radial phonons if a partial derivative on a radial variable was taken:
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Qop ( (K Ks+ KsK, ) — 0o K (K + 1)) il.
(4)

Here the operator « describes radial shifts of lattice atoms and is equal to:

= —Z \/ RS Okt b) (5)

Here p is the crystal specific mass, w(k) is the frequency of a phonon with a
wave-vector k, the creation and annihilation operators b+ and bk respectively

satisfy commutation relations [b,y,bz] = O, and the parameter Ry — oo.

In the long-wave limit the radial-phonon frequency is equal to [5, 9]:

wn

W= \/1+ k2~ wo + B, (6)

where wy = ¢/ A/3TRY ~ 10" ¢!, A = bae’n/cjip, ¢| is a longitudinal

velocity of a sound, n is the crystal density, B = cﬁ/ng ~ 1072 cm?/c.



The interaction operator can change a rotational moment and emit one
radial phonon. Note, that for the ion Heou™ the only possible changing is
AK = 2 and for the ion Hey™ AK =1, 2 is possible.

We shall take the well-known formula from perturbation theory for tran-
sitions into a continuous spectrum (see, e.g., [11]) to find the probability of
the transition of the ion from the initial state |i) = |K, M) to the final state
f) =K', M'):

2

dw;r = —Z‘ i + 1K', M|V | K, M)|nph)‘ 6(E; — Ef)dv.  (7)

We took into account, that only one phonon could be emitted, dv; is the
number of radial phonon states with the wave-vector k,

E;— Ef = hw, K(K +1) — hw, K'(K' + 1) — hw(k) = 2hw, (2K — 1) — hw(k),

hw, = B, is the quantum of rotational energy. We suppose, that the rota-
tional number changes as K' = K — 2.



Detail calculations of matrix elements are very complicated in a general
form. But it is not necessary to carry out them for evaluating interesting
probabilities. It is sufficient to calculate the simplest case when matrix el-
ements are diagonal on a projection of the rotational number. Omitting
complex calculations for lack of space, we give the expression for the proba-
bility of the transition K’ = K — 2 in a unit of time:

;16622‘%5};) (n(?BT(QK—l))nLl) (d‘jlf))_l . (8)

w=2w, (2K —1)

WK sK—2 —

where R; is the radius of the first coordination sphere, C = 12ae(),

B(K) =

OK (K — 1)? , 14 5K
(2K + 1)(2K — 1)2(2K — 3) (K R Ay 7o 3)’

n(2B,(2K — 1)), dw/dk are a distribution function and a spectrum density
for radial phonons.



We get finally that the rate transition doesn’t depend on temperature
and could be represented in this way:

WK SsK—2 ~ 109\/f? (9)
K>1

Thus, our estimates show, that a transition time from upper to the lowest
rotational levels of energy with iK' = 1 for the ortho- and K = 0 for the
para-ion is of the order of

Teor ~ 1078 — 10 .



Relaxation of vibrational states

Now we shall evaluate a transition rate between energy levels of a vibra-
tional spectrum. Firstly note, that for the ion Heou™ two types of vibrations
are exist: symmetric and antisymmetric one. Frequencies of antisymmetric
vibrations are approximately one order more then the same for symmetric
vibrations. Therefore, we shall consider transitions only between states of
symmetric vibrations. Let’s direct z-axis along the ion axis and keep only
part linearly dependent on nucleus displacements. In this case the operator
of the phonon-vibrational interaction is equal to:

12ce . ag
0
?"7 RU

where a™ and a are increasing and decreasing operators respectively in the
vibrational part of the ion’s Hamiltonian, ag = \/h/MHEwA 1s the character-
istic unit of length of the ion vibrations and w4 is the frequency of symmetric
vibrations.

Vyph = (@ +a)a(3cos’d — 1), (10)




The transition probability between vibrational states is calculated by the
same way as in the case of transitions between rotational states, taking the
well-known formula from perturbation theory for transitions into a continu-
ous spectrum. Omitting complex calculations for lack of space, we give the
expression for the probability of the transition v = v — 1 in a unit of time:

2 —1
, 1w
v—v—1 — :\T 2 = ° 1 (— . 11
w 1 1C (Rn) 50 (k) RIS (n(wA) + ) 7 . (11)

The formulas (8) and (11) allow us to compare transition rates between
vibrational and rotational states:

Wy 1 2 (ag\?  ww, 2w, (2K — 1) — wy n(w(k)) +1
(Rg) B(K)wa WA — Wy n(ZwT(ZK - 1)) +1
(12)
In the limit of large values of the rotational number K the ratio (12) could

be simplified:
Wyib v w, \ 2/?
ViDr ~ T ' 13
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Thus, we can see, that the rates (8) and (11) are of the same order and
approximately equal to each other for the lowest energy levels.

The calculations, that were carried out, show that the molecular ion
Hey ™ is thermalized during quite short time 7 ~ 107% — 107 %c. A thermal-
ization time for the molecular ion Heu™ is approximately for the one order
less. Really, according to the formulas (8) and (11), we have (w,/w4)*? ~
(MHe/m’u):%M ~ 10. If we suppose that at the initial moment of the ion for-
mation all spin states of the helium nuclear are equiprobable, we shall get
that with the probability of 1/4 the ion Heyu™ is in the para-state (I = 0)
with K = 0 and with the probability of 3/4 is in the ortho-state (I = 1) with
K = 1. The molecular ion Heu™ is completely thermalized and lives in the
ground state with K =0 and v = 0.



Removing degeneration on M

In spite of the ion Heyu™ after a thermalization process in the ortho-state
possesses non-zero rotational number K = 1, a “usual” rotation could not
exist, because of very strong interaction of its quadrupole moment with un-
homogenous electric field of the crystal lattice. This interaction gives rise to
the effect that could be interpreted as a “slowing down” rotation.

Really, the interaction operator (3) removes a degeneration of rotational
states on the projection M of the rotational number K. After taking into
account this interaction, rotational energy levels depend on both K and a
modulus of |M|: Ex a|. The value of the interaction (2) is of the order of
the quantum of rotational energy, nevertheless, the perturbation theory is
valid. Naturally, the energy interval for the following permitted level with
K =3is AE = E3 — E; = 10B, > fwy. Thus, the interaction (3) splits
the triple-degenerated rotational level with K =1 on two levels: single state
with M = 0 and a double degenerated level with M = 41. The energy level
splitting could be found as a diagonal matrix element:



eM = (K, M|Vp|K, M). (14)

After some calculations we get the splitting for the level with K = 1:

4 cve()
NAe = — i 15
We can write eigen states in the form:
1,0) =|K =1, M =0), (16)
1
1.+ :-(K=1,M=+1 j:K:LM:—l), 17
1, £) 7 | ) £ | ) (17)

The results are very important when deriving spin-hamiltonian of the molec-
ular ion.



Conclusions |

In the conclusion we emphasize that the molecular ions both He,u™ and
Hep™, if they form, are thermalized very quickly respectively to the muon
life-time. If a formation of the ion Hep™ was preferably, no relaxation of
the muon spin polarization could be observed. Thus, we may approve that a
formation of the molecular ion Heyu™ is preferably and the ion Hep™ could
be formed in the less part of events. In a pure solid *He the formed molecular
ion *He, it is in the ground state with K = 0. Any hyperfine interactions are

absent for this state, and no depolarization could be observed. Three types
of molecular ions could be formed in a mixture *He-*He: *Heou™, *Hegu™
and *He*Hep ™. The ground states for the two last types of the ions have the
rotational number K = 0, and no depolarization could be observed in these
cases. A muon spin depolarization could be observed only for the molecular
ion *Hequ ™.



Spin-hamiltonian of thermalized ion He,u*

For a thermalized ion *He, ™ at the external magnetic field B the Hamilto-
nian of the hyperfine interactions is in general case of the form:

Hypy = — 201, B(5 + CI) + (w18 + wol)K + wy (KB)+
+0g { K (K + 1)8T - ;i[(ﬁ"‘)(ﬁg) + (Re)(RD)] }, (1)

where 1, 1s the magnetic moment of a muon,

_ S
nR?

Q ~3-10%,

2
2K —1)(2K + 3)

9K — —

is the reduced matrix element, ¢ is the ratio of the magnetic moments of *He
and u*, Ry ~ 0.93Ais a linear dimension of an ion, w; and wy are constants
describing spin-rotation interactions of magnetic moments of a muon and
nuclei respectively, wy is a precession frequency of an ion rotational moment.



One can easy see that hyperfine interactions are equal to zero for a para-ion
with a total nuclear spin I = 0. So we consider only an ortho-ion when a
total nuclear spin [ = 1.

By the definition the spin-hamiltonian is a diagonal matrix element on
the eigen states of the orbital motion (see e.g. [9, 10]. The eigen states for
the ion Heyu™ at the rotational state with K =1 are of the form [6]:

0) =|K =1, M = 0), (2)
1
l,i)_E(K_l,M_+1)j:K_1,M_1)). (3)

We can see that a spin-rotation interaction is equal to zero in all states

Let us direct the z-axes along the external magnetic field B. In this case
the spin-hamiltonian for the states (2)-(3) could be written in the form:

(5)

Here w is the precession frequency of a muon magnetic moment at the exter-
nal magnetic field.



The formulas (4) and (5) show that the spin-hamiltonian has very anisotropic
view and constants differs both in a value and a sign. In particular it means
that depolarization rates will be differ for different states. It is obvious that

in a zero external magnetic field the Hamiltonians (4) and (5) have the same
spectrum: three double degenerated energy levels:

1++3 1 —+3 2
\/_Q, €34 = \/_Q: E56 — —={. (6)

D D

A simple analytical solution for a nonzero magnetic field exists only for the

Hamiltonian (4):

€1,2 =

1 Q\° 2 -
€129 :gQZFwaL 3 (3) + gQ(l — (Jw + (1 — ()?w?,

1 Q\? 2 -



Depolarization rate

The spin flip rate frequency v for the nuclear *He in an ion can be change
in a wide range in dependence of temperature and other parameters [5].
It is necessary to solve relaxation equations for describing depolarization
process. Relaxation rates rates in our case could be calculated in frames of
the Wangsness-Bloch equations because they are applicable for fluctuated
magnetic fields (see, e.g. [10, 11]). For the molecular ion Heypu™ they have
the form [10]:

dp | .. .3
3': [th% } 2v (llﬂll+lzﬂlz§ﬂ)- (8)

Here p is a spin-density matrix of the ion, Hy, is the spin-hamiltonian (4) or
(5), i1 are spin operators of Helium nuclei in the ion. A direct mechanism
of the muon spin depolarization is neglected.



In a general case of an arbitrary relation between external magnetic field
B, energy of magnetic dipole-dipole interaction and a spin flip frequency v an
analytical solution of the equations (8) doesn’t exist. If a spin flip frequency

v < (1 a depolarization rate is simply equal to v. A behaviour of a muon
spin polarization is determined a complex many-frequency picture which ef-
fectively observed as a fast depolarization [12]. In this case a depolarization
rate doesn’t depend on temperature and sufficiently exceeds experimentally
observed one. This is the upper limit of a depolarization rate and it can exist
at very low temperature that was not achieved at experiments [1, 2, 3, 4].
Let us consider a limit of the strong external magnetic field w > €2 when
rather simple analytical formulas could be got. In this case we may keep in
the Hamiltonian only a secular part of the magnetic dipole-dipole interaction:

Hyps = —w(3, + (L) — Q8.1,, (9)
where
& — —4Q/5  for the state (2) (10)

202/5 for the states (3).



In the secular approximation (9) a longitudinal component of a muon spin
polarization is conserved. Let define a total polarization of nuclear spins in
an ion as

P! =Trlp, or P!l =Tr I.p, P! ="Tr Iip. (11)

A longitudinal component P! of the total polarization of nuclear spins in an
ion relaxes with a rate 2v in this case.

For a transverse component of a muon spin polarization we get a system
of five connected equations:

P [—iw 0 i20) 0 0 '\ /P
i (PE\ 0 —iw—2v 0 i0) 0 /PE\
En Q| = 0 0 —lw — 2v 0 iQ (1
| Q2 0 iﬁ/ﬁl 0 —1w — 2v 0 %
\T} \21} 0 1w 0 —iw—ZL// \T/
(12)
where

Q1 =Qy.= T‘f&iﬂ Q2= Q4. = Tr?fzip, r=7,,= T-r§+f;2p’
(

Y



The equation system (12) gives four rapidly relaxed solutions with very
small amplitudes (roots of the characteristic equation are Ay o = —2v —i((w=+

(2/2), A3 = 2\, ~ —2v) and one slowly down solution. An amplitude of this
solution is approximately equal to 1 with a neglecting parts of the order
(2/v. Thus the time dependence of a transverse component of a muon spin

polarization in a strong external magnetic field is determined by a simple
formula:

Py (t) = e P, (0), (14)
where _
402
A= 20 (15)
8v2 + wll

The formulae (14)-(15) show that a depolarization rate of a transverse com-

ponent of a muon spin polarization in state (2) is approximately four time
exceeds that one in states (3).



Conclusions |1

A polarization of an ensemble of muons must be written as a sum of polar-
izations in para- and ortho-ions:

3

P.(t) = =PO®t) + ZPS)(t), (16)

1

4

where the first item describes the polarization behaviour for the para-ion

and the second one for the ortho-ion. We assume that Helium nuclei are
: , C 0

unpolarized. The component of a total polarization P}L )(t) conserves and

doesn’t depend on temperature. The component Pfl)(t) obeys the formulae
(14) and (15):
PP @) = woPM0(8) + w PUEY (1)

If all the three states (2)-(3) were equiprobable, we can write for probabilities

wy = 1/3 and wy; = 2/3. The relaxation of this component was observed at
the experiments.
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Jrigure 1: Temperature dependence of a depolarization rate in solid *He with
different concentrations of *He: 1-5-10"* and 2 - ~ 1-107% at v = 224
cm 3 [4]



The above-given formulae explain the main experimental results (see fig.
1). Really, the relaxation rate (15) decreases when the magnetic field in-
creases. The relaxation rate is effectively reciprocally proportional to v, if
the spin flip frequency was respectively large (v > w, €2). This ratio gives
an exponential growth of a relaxation rate, when temperature decreases at

T < 1K. The equation (15) isn’t valid when v ~ w, 2, but we can see that
a relaxation rate has a maximum. The value of this maximum must be less

than the characteristic parameter 2. So we can say that:
Amax|ymﬂ < {2

We can get the lowest estimation of the maximum value, if we extrapolate
the equation (15) in the region v ~ Q. Simple calculations show, that the
relaxation rate A has a maximum when 822 = w(. For this value of spin flip
frequency we get a maximum value for the relaxation rate as:

()
Apax = N/ —.
For the external fields B = 100 Gs used in experiments [1]-[4] we obtain an
estimation Apax ~ 1.5-10° ¢71, that is in a good agreement with experimen-
tal data. When a spin flip frequency decreases to v < () many frequency
precession with a relaxation proportional to ¥ must be observed. This limit

was not achieved at experiments.



The value of a relaxation rate for the observed plateau at T" > 1K corre-
sponds the second moment for the direct magnetic dipole-dipole interactions
of a muon with lattice nuclei:

2

(0%) = = (hyyn)” I(T +1) > ot

. = . .
For the un-deformed lattice the second moment /(c2) ~ 0.9 - 10° ¢! is
greater than experimental-observed minimum value. This difference could

be explained by fluctuations of host nuclear magnetic moments slowing down
the static value.
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