Начиная с 1992 года, в Лаборатории мезонной физики выполняется научная программа "Физика с η -мезонами", включающая в себя широкий спектр экспериментов по изучению рождения η -мезонов и взаимодействия η -мезонов с нуклонами и ядрами. Эксперименты выполняются на π -мезонном канале синхроциклотрона ПИЯФ, который очень удобен по своим характеристикам (энергия π -мезонов до 640 МэВ, поток π -мезонов до (2–5) \times 10⁵ 1/c) для изучения процессов рождения η -мезонов на нуклонах и ядрах в околопороговой области энергий.

В частности, выходы реакции $\bar{\pi p} \rightarrow \eta n$ были измерены при 12 импульсах налетающих пионов от порога (685 МэВ/с) до 720 МэВ/с. Измерения были выполнены путём детектирования нейтронов отдачи (и определения их времени пролета) для девяти различных углов эмиссии нейтронов в лаб. системе. Измеренные зависимости выходов реакции от импульса налетающих π -мезонов сопоставлялись с расчетными кривыми, полученными моделированием по Монте-Карло; при проведении расчетов использовалось массы η -мезона $M_{\eta}=547,3$ МэВ/с², приведённое в таблицах Review of Particle Properties в 2000 году. Расчетные кривые выхода хорошо согласуются с измеренными, что подтверждает правильность вышеприведенного значения M_n . Эксперимент был выполнен в сотрудничестве с физиками США из Университета Калифорнии в Лос-Анжелесе (руководитель группы профессор Б.М.К. Нефкенс) и из Абилинского христианского университета (руководитель группы – профессор М.Э. Садлер).

В рамках программы исследования процесса рождения η -мезона на π -мезонном канале синхроциклотрона ПИЯФ выполняются с помощью спектрометра нейтральных мезонов измерения дифференциальных сечений реакции $\pi^- p \to \eta n$ при импульсах налетающих *п*-мезонов вблизи порога этой реакции. Поскольку в околопороговой области сечение реакции резко растёт с импульсом налетающих пионов, импульсный захват в пучке был уменьшен при проведении этого эксперимента до 1,5% (полная ширина на полувысоте соответствующего распределения) с помощью вертикального щелевого коллиматора, помещённого в той части *п*-мезонного канала, в которой импульсная дисперсия максимальна. Кинематика реакции $\pi \bar{p} \to \eta n$ имеет существенные особенности. В области вблизи порога реакции η -мезоны, образующиеся в системе центра масс в широком диапазоне углов θ_n^{cm} от 0° до 180° , при переходе в лабораторную систему координат оказываются в узком угловом конусе. При последующем распаде η -мезонов $\eta \to 2\gamma$ фотоны испускаются в интервале углов от 0° до 180° (по отношению к импульсу η-мезона), но наиболее вероятен их симметричный разлёт. Эти кинематические особенности позволяют измерить с помощью спектрометра нейтральных мезонов ПИЯФ, имеющего ограниченный угловой захват, дифференциальные сечения реакции $\pi \bar{p} \to \eta n$ в полном диапазоне углов от 0° до 180° в системе центра масс. Величина полного сечения вычислялась после этого путём интегрирования полученного дифференциального сечения по углу в системе центра масс.

Выполнены измерения сечений реакции $\pi p \to \eta n$ при импульсах налетающих π -мезонов 700, 710 и 720 МэВ/с. Форма дифференциальных сечений, полученных при указанных импульсах, различается весьма существенно — если при 700 МэВ/с сечения практически изотропны по углу, то при 710 и 720 МэВ/с угловая зависимость анизотропна, но симметрична относительно $\cos\theta^m=0$ (напоминает профиль тарелки). Это говорит о том, что непосредственно вблизи порога процесс $\pi p \to \eta n$ идёт преимущественно через образование резонанса $S_{11}(1535)$ с его последующим распадом по каналу ηN , но при более высоких импульсах заметно проявляется D-волна.