In the framework of a general program for studying πN interaction, a new series of experiments on measuring the differential cross sections of πp charge exchange scattering $\pi p \to \pi^0 n$ started in 90s at the pion channel of the PNPI synchrocyclotron. The experiments covered the same energy range (from 300 to 600 MeV) as the previous series of the $\pi^{\pm}p$ elastic scattering investigations. Existing experimental data on differential cross sections of πp charge exchange scattering were very scarce and contradictory, and new precision results, being used in performing a new phase shift analysis, will lead to a further essential improvement of our knowledge of the πp scattering amplitude. In particular, the charge splitting effect in the P_{33} phase shifts will be defined with higher accuracy.

In the first experiment, the differential cross sections of πp charge exchange scattering to the backward hemisphere were measured by detecting the recoil neutron in coincidence with one gamma from the decay $\pi^0 \rightarrow 2\gamma$, the neutron energy being determined by means of the time-of-flight technique. Obtained results exceed by an accuracy all experiments which were made earlier in another scientific centres; moreover, they cast some doubts on the majority of previous results, which were used as a basis on the phase shift analyses of pion-proton scattering.

As the next step, the differential cross sections of the reaction $\pi p \to \pi^0 n$ at small angles were measured in the energy range from 300 to 600 MeV. A novel device – the neutral meson spectrometer – was designed and created at the Meson Physics Laboratory for this experiment. This spectrometer consists of two total absorption electromagnetic calorimeters each made of 24 CsI(Na) crystals. Owing to a good energy and spatial resolutions of calorimeters, the energies of both photons from the decay $\pi^0 \to 2\gamma$ and the emission angles of these photons can be measured with a good accuracy. On the base of these measurements, one can reconstruct the energy of π^0 meson produced in the reaction $\pi p \to \pi^0 n$ and the angle at which this meson was produced. Using the neutral meson spectrometer the cross sections at angles close to 0° (*i.e.* for forward scattering) were obtained with a high precision at ten values of the incident pions energies in the above mentioned range.