РОССИЙСКАЯ АКАДЕМИЯ НАУК ПЕТЕРБУРГСКИЙ ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ им. Б.П. Константинова

На правах рукописи

УДК 539.12

Изотов Антон Анатольевич

ИЗМЕРЕНИЕ КОЭФФИЦИЕНТА ПЕРЕДАЧИ ПОЛЯРИЗАЦИИ κ_0 ОТ ДЕЙТРОНА ПРОТОНУ В ПРОЦЕССЕ ${}^{12}C(\overrightarrow{d},\overrightarrow{p})X$.

01.04.16-физика атомного ядра и элементарных частиц

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук

Гатчина-2004

Работа выполнена в Петербургском институте ядерной физики им. Б.П. Константинова РАН.

Научные руководители: доктор физ.-мат. наук, главный научный сотрудник Золин Л.С,

> кандидат физ.-мат. наук, старший научный сотрудник Миклухо О.В.

Официальные оппоненты:

доктор физ.-мат. наук, старший научный сотрудник

> доктор физ.-мат. наук, профессор

> > .

Ведущая организация -

Защита состоится «____» ____ 2002 г. в _____ часов на заседании диссертационного совета Д-002.115.01 при Петербургском институте ядерной физики им. Б.П. Константинова РАН, по адресу: 188300, Ленинградская область, г. Гатчина, Орлова Роща, ПИЯФ РАН.

С диссертацией можно ознакомиться в библиотеке Петербургского института ядерной физики им. Б.П. Константинова РАН.

Автореферат разослан «____» ____ 2002 г.

Ученый секретарь диссертационного совета И.А. Митропольский

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ.

Основная цель работы.

Цель работы состояла в измерении коэффициента κ_0 дейтрона протону передачи поляризации OTВ $^{12}C(\overrightarrow{d},\overrightarrow{p})X$ реакции развала дейтрона на углероде при угле вылета вторичного протона 0° в области внутридейтронных импульсов k (в системе бесконечного импульса дейтрона) от 0 до 550 МэВ/с с использованием пучка векторно поляризованных дейтронов синхрофазотрона ОИЯИ. Задача решалась путем измерения поляризации вторичных протонов от исследуемой реакции с помощью широкоапертурного спектрометра АНОМАЛОН, специально преобразованного для этих целей в двухплечевой поляриметр на основе жидководородной анализирующей мишени с реконденсацией водорода жидким гелием.

Актуальность темы.

Дейтрон является простейшей связанной двухнуклонной исследование которой позволяет системой, получить информацию 0 характере ядерных сил на малых расстояниях, где возможно проявление ненуклонных степеней свободы.

Одним из возможных путей изучения структуры дейтрона является исследование процесса развала дейтрона в экспериментах, в которых наряду с дифференциальным сечением измеряются поляризационные характеристики реакции, такие, как коэффициент передачи поляризации от векторно поляризованного дейтрона вторичному протону и тензорная анализирующая способность при соответствующей поляризации дейтрона. В определенных кинематических условиях эксперимента даже при высоких

относительных энергиях сталкивающихся частиц, при которых выполняются условия применимости импульсного приближения, заметную величину могут иметь поправки к этому приближению, связанные с таким механизмом реакции развала дейтрона, как взаимодействие в конечном состоянии. Измерение отмеченных выше характеристик реакции в одних и тех же кинематических условиях эксперимента позволяет надежно идентифицировать механизм реакции, что весьма важно для получения адекватной информации о структуре дейтрона.

К моменту постановки эксперимента, описываемого в диссертации, наблюдался значительный дефицит данных по коэффициэнту передачи поляризации из-за существенно больших трудностей его измерения по сравнению с дифференциальным сечением и тензорной анализирующей способности процесса развала дейтрона. Кроме того, существовавшие на то время данные, полученные разными группами, противоречили друг другу даже в области малых внутридейтронных импульсов.

Научная новизна работы.

Измерен коэффициент передачи поляризации от дейтрона протону κ_0 в реакции ${}^{12}C(\overrightarrow{d},\overrightarrow{p})X$ при угле вылета вторичного протона 0° в диапазоне внутридейтронных импульсов (в системе бесконечного импульса дейтрона) k от 0 до 550 МэВ/с. В области k > 420 МэВ данные получены впервые.

Показано, что для удовлетворительного описания результатов эксперимента достаточно использовать реалистические волновые функции дейтрона, если в расчетах учитываются поправки к импульсному приближению, обусловленные взаимодействием в конечном состоянии

реакции развала дейтрона.

Научная и практическая ценность работы.

Полученные в диссертации экспериментальные данные по κ_0 в процессе развала дейтрона могут быть использованы для проверки различных моделей дейтрона, а также для изучения механизма реакции.

Существенная методики эксперимента, часть выполненного в настоящей работе, использовалась В дальнейшем при исследовании тензорной анализирующей способности T_{20} в процессе развала дейтрона ${}^{12}C(d,p)X$ на тензорно поляризованном пучке дейтронов синхрофазотрона ОИЯИ. Совместный анализ данных по κ_0 и T_{20} , полученных одинаковых кинематических условиях эксперимента, позволяет надежно идентифицировать механизм реакции развала дейтрона и, как следствие, получить надежную информацию о структуре дейтрона.

Созданная методика выделения событий от упругого pp-рассеяния в водородном анализаторе поляриметра AHOMAЛOH с помощью годоскопов сцинтилляционных счетчиков может быть использована в других экспериментах.

Апробация работы.

Основные результаты работы докладывались на: Международных симпозиумах ДЕЙТРОН-93 в Дубне и СПИН-92 в Нагойе.

Выполненный с участием диссертанта цикл работ был отмечен дипломом на конкурсе ОИЯИ в 1992 году по классу научно-методических работ за "Создание широкоаппертурного поляриметра с трековыми детекторами для проведения исследований на пучке поляризованных

дейтронов ОИЯИ" и премией ОИЯИ в 1993 году по классу научно-исследовательских экспериментальных работ за "Измерение коэффициента передачи поляризации и тензорной анализирующей способности в реакциях развала дейтрона в области рекордно высоких значений внутренних импульсов в дейтроне".

Структура и объем работы.

Диссертация состоит из 5 глав и приложения. Общий объем работы составляет 84 станицы, включая 26 рисунков и 7 таблиц. Библиография содержит 50 ссылок. Общие итоги работы сформулированы в главе "Заключение."

КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ.

Глава 1. Введение.

Содержит краткое описание современных представлений о спин-орбитальной структуре дейтрона и импульсном распределении нуклонов в дейтроне. Здесь даются определения поляризационных характеристик реакции развала дейтрона, таких, как тензорная анализирующая способность T₂₀ дейтронной мишени и коэффициент передачи поляризации κ_0 от дейтрона вторичному протону, и внутридейтронного импульса k в системе бесконечного импульса дейтрона. Сделан обзор предшествовавших указанных описываемому эксперименту измерений поляризационных характеристик для реакций упругого pd-рассеяния и развала дейтрона на ядрах. В заключении главы сформулирована основная цель работы.

Глава 2. Методика измерения коэффициента

передачи поляризации κ_0 в реакц	ии ${}^{12}C(\overrightarrow{d},\overrightarrow{p})X$
при угле вылета вторичных проте	онов 0^o .

Посвящена описанию экспериментальной установки и условий, в которых проводились измерения (см. Рис. ??).

Пучок поляризованных векторно дейтронов синхрофазоторона ОИЯИ падал на углеродную мишень T₁ с толщиной 50 г/см². Интенсивность пучка составляла приблизительно 10⁸ дейтронов в секунду. Протоны от исследуемой реакции с импульсом $k_p=4,5$ ГэВ/с (± 2%) и углом рассеяния на мишени $\Theta = 0 \pm 1,3$ ° захватывались проводки вторичных магнитным каналом частиц И транспортировались расположения В зону мишенианализатора Т₂ поляриметра АНОМАЛОН для определения их поляризации P_p . По измеренному значению поляризации вторичных протонов и известному значению поляризации первичных дейтронов P_d находился коэффициент передачи поляризации $\kappa_0 = P_p/P_d$.

Поляризация дейтронов определялась в начале и в конце эксперимента с помощью поляриметра АЛЬФА. При этом углеродная мишень T_1 убиралась из фокуса F3 магнитного канала, а жидководородный анализатор поляриметра АЛЬФА устанавливался в фокусе F5 этого канала. Поляризация дейтронов находилась по ассимметрии упругого дейтрон-протонного рассеяния и составляла $P_d=53\% \pm 1\%$ (стат.) $\pm 2\%$ (сист.).

Различные значения внутридейтронного импульса k в интервале k=0.550 МэВ/с задавались путем изменения импульса первичных дейтронов. Использовались дейтронные пучки с импульсами 9,0, 7,5, 7,0, 6,5 и 5,8 ГэВ/с.

Вторичный пучок состоял в основном из дейтронов (вплоть до 95%, примесь дейтронов зависила от импульса первичного дейтронного пучка). Режекция дейтронов и

выделение протонов от исследуемой реакции осуществлялись с помощью временных измерений. Для каждой частицы во вторичном пучке измерялось время ее пролета между сцинтилляционными счетчиками S_{T2} и S_{T1} , расположенными перед анализатором поляриметра и на расстоянии 72 м от него, соответственно. Время-пролетный спектр, приведенный на Рис. ??, демонстрирует надежное выделение полезных событий.

В качестве анализатора поляриметра АНОМАЛОН использовалась жидководородная мишень T_2 , толщиной 1 м. Пропорциональные камеры PC_{1-5} , PC_7 и PC_{8-10} служили для определения параметров треков вторичного протона от исследуемой реакции до анализатора, после его рассеяния на анализаторе и отклонения в магнитном поле магнита SP-40, соответственно. По углу отклонения в магнитном поле спектрометрического магнита SP-40 определялся импульс рассеянного на анализаторе вторичного протона. Для выделения событий от упругого pp-pacceяния в анализаторе и подавления событий от неупругих процессов использовались два канала годоскопов сцинтилляционных счетчиков для регистрации на совпадения рассеянных на анализаторе протонов S_{FL} (S_{FR}) и протонов отдачи S_{RR} (S_{RL}) . Угловое положение годоскопов S_{FL} (S_{FR}) и S_{RR} $(S_{RL})pp$ — .S_{RR} был изготовлен в ПИЯФ. Использование этих годоскопов позволило в ходе эксперимента существенно подавить вклад от неупругих процессов и, как следствие, увеличить анализирующую способность поляриметра.

Поляризация вторичных протонов в обоих каналах сцинтилляционных годоскопов определялась по асимметрии их рассеяния на мишени-анализаторе при двух противоположных направлениях поляризации первичного

дейтронного пучка и известной анализирующей способности упругого pp-рассеяния. Знак поляризации первичных дейтронов изменялся на обратный в каждом цикле ускорителя. Эффективность поляриметра (определяемой как отношение числа протонов, рассеянных на анализаторе в рабочем угловом диапазоне, к числу протонов, падающих на анализатор) была на уровне 2%.

Глава 3. Обработка экспериментальных данных.

Посвящена критериям отбора событий от исследуемой реакции, соответствующих случаю упругого рассеяния вторичных протонов от этой реакции на протонах мишени-анализатора. Подробно описываются методики юстировки координатных детекторов и восстановления треков вторичных протонов до и после их рассеяния на анализаторе. Приводятся формулы, которые использовались для определения поляризации вторичных протонов.

Из-за присуствия поля спектрометрического магнита SP-40 (см. Рис. ??) после анализатора поляриметр АНОМАЛОН являлся несимметричной установкой. Его левое и правое плечи (каналы) имеют различные угловые захваты. Поэтому в данной работе использовался метод определения поляризации вторичных протонов, основанный на изменении направления поляризации первичного пучка дейтронов в процессе измерений. При этом правое и левое плечи поляриметра рассматривались как независимые. Поляризация вторичных протонов в каждом плече поляриметра (P_L и P_R) находилась по асимметрии рассеяния $\varepsilon_{L,R}$ при различных направлениях поляризации (+, -) первичного дейтронного пучка:

$$P_{L,R} = \frac{\varepsilon_{L,R}}{\langle A_{pp}(\theta)\cos(\phi) \rangle_{L,R}}, \\ \varepsilon_{L,R} = \frac{N_{L,R}^+ - N_{L,R}^-}{N_{L,R}^+ + N_{L,R}^-},$$
(1)

где $N_{L,R}^+$ и $N_{L,R}^-$ - нормированые на число падающих на анализатор протонов числа событий, зарегистрированных левым (L) и правым (R) плечами поляриметра, при различных направлениях поляризации (+,-) дейтронного $< A_{pp}(\theta)\cos(\phi) >_{L,R}$ - средняя эффективная пучка; анализирующая способность левого (правого) плеча поляриметра, которая находилась ПО известной параметризации $A_{pp}(\theta)$, взятой из работы (H.Spinka et al., Nucl.Instr. and Meth. 221 (1983), 239-261.), и составляла в среднем ≈ 0.15 в условиях данного эксперимента; θ и ϕ - полярный и азимутальный углы рассеяния вторичного протона на протонном анализаторе. Результаты измерения поляризации в обоих плечах поляриметра усреднялись $P_p = \langle P_L, P_R \rangle$ и затем находилась величина коэффициента передачи поляризации κ_0 от дейтрона протону в исследуемом процессе ${}^{12}C(\vec{d},\vec{p})X$ по формуле

$$\kappa_0 = \frac{P_p}{P_d},\tag{2}$$

где P_d - поляризация дейтронов пучка.

Поляризация вторичных протонов вычислялась для ансамбля событий, отобранных по следующим критериям:

1. Критерий по времени пролета (режекция дейтронов, падающих на анализатор).

2. Кинематический критерий отбора событий от упругого pp-рассеяния в анализаторе с помощью годоскопов сцинтилляционных счетчиков.

3. Критерии отбора на основе данных о координатах точек pp-взаимодействий в мишени-анализаторе, об углах и импульсах рассеянных протонов.

На Рис. ?? приведено, для примера, импульсное распределение рассеянных на водородном анализаторе протонов. Импульсы протонов вычислялись по величине угла их отклонения в магнитном поле спектрометрического магнита SP-40. В обработку включались только события, принадлежащие узкой области вблизи максимума пика, соответствующего упругому pp-рассеянию. При этом вклад событий от неупругих процессов в указанной области был менее 5% от полного числа событий в пике.

В работе исследовалось влияние границ отбора событий на вычисляемое значение поляризации вторичных протонов.

Глава 4. Результаты измерений κ_0 и их анализ.

В таблице ?? представлены результаты измерений коэффициента передачи поляризации κ_0 от векторно поляризованного дейтрона протону в реакции ${}^{12}C(d, \vec{p})X$ при угле вылета вторичного протона 0° в зависимости от величины внутридейтронного импульса k в системе бесконечного импульса дейтрона. Приведенные данные нормированы на измеренное значение κ_0 , соответствующее Заметное отличие измеренного импульсу k=30 MэB/c. абсолютного значения κ_0 при k=30 МэВ/с от единицы возможно связано не только со статистической, HO с систематической ошибкой определения средней И анализирующей способности упругого pp-рассеяния < A_{pp} > (5%) по параметризации $A_{pp}(\theta)$, взятой из работы (H.Spinka et al., Nucl.Instr. and Meth. 221 (1983), 239-261.), а также с систематическими ошибками определения поляризации первичного пучка дейтронов (4%) и примесью от неупругих процессов в области пика упругого pp-рассеяния (<5%).

На Рис. ?? представлены для сравнения результаты настоящей работы совместно с результатами более ранних

$k~(\Gamma$ э $\mathrm{B/c})$	κ_0
$0,030 \pm 0,020$	$1,000 \pm 0,047$
$0,\!186 \pm 0,\!025$	$0,696 \pm 0,064$
$0,\!271\pm0,\!029$	$0,272 \pm 0,071$
$0,\!375\pm0,\!033$	$-0,190 \pm 0,078$
$0,520 \pm 0,043$	$-0,109 \pm 0,128$
$0,550 \pm 0,045$	-0.039 ± 0.167

Таблица 1: Измеренные в данной работе значения κ_0 в зависимости от внутридейтронного импульса k в системе бесконечного импульса дейтрона.

измерений κ_0 на установке АНОМАЛОН (Т. Dzikowski et al., JINR report E2-92-25 (1992) 181-184.) в 1991 г., на установке АЛЬФА (В. Kuehn et al., Phys.Lett., B334 (1994), 298-303), а также в Сакле (Е. Cheung et al., Phys. Lett. B284 (1992) 210-214.) в 1992 г., где исследовалась реакция ${}^{1}H(\vec{d}, \vec{p})X$ на пучке поляризованных дейтронов с импульсом 3,5 ГэВ/с. Видно, что результаты четырех указанных выше экспериментов в пределах ошибок не противоречат друг другу в интервале внутридейтронных импульсов k от 0 до 0,4 ГэВ/с. Данные в области k > 0,5ГэВ/с получены в настоящей работе впервые.

На Рис. ?? приведены также результаты различных теоретических вычислений κ_0 . Сплошная и штрихпунктирная кривые отвечают расчетам в импульсном приближении с использованием волновых функций дейтрона, найденных на основе Парижского потенциала (М. Lacombe et al., Phys.Lett., B101 (1981) 139-140.) и потенциала Рейда с мягким кором (A.P. Kobushkin, L. Vizireva, J.Phys. G8 (1982) 893-901.), соответственно.

Как видно из рисунка, результаты этих вычислений несущественно зависят в исследованной области k от используемой в расчетах волновой функции дейтрона и существенно противоречат экспериментальным данным в области больших внутридейтронных импульсов k>0,35 ГэВ/с. Причиной обнаруженного расхождения скорее всего является взаимодействие в конечном состоянии реакции ${}^{12}C(\vec{d},\vec{p})X$, которое не учитывается в рамках импульсного приближения.

Данные по κ_0 , полученные в данной работе, и данные полученные с участием автора настоящей T_{20} , ПО работы несколько позже на установке АНОМАЛОН (см. Приложение А), были проанализированы на предмет справедливости импульсного приближения в исследованных кинематических условиях эксперимента. На Рис. ?? показана зависимость экспериментального значения тензорной анализирующей способности T_{20} от экспериментального Как видно из рисунка, экспериментальные значения κ_0 . точки (T_{20}, κ_0) не лежат на окружности в области $k \geq 271$ МэВ/с (импульсу k=271 МэВ/с отвечает на рисунке точка с кординатами T_{20} =-0,833, κ_0 =0,272). Это говорит о том, что независимо от модели нуклон-нуклонного взаимодействия импульсное приближение не выполняется в данной работе по крайней мере при $k > = 271 \text{ M} \cdot \text{B}/\text{c}$. К аналогичному выводу при сопоставлении экспериментальных данных по T_{20} и κ_0 пришли авторы работы (В. Kuehn, C.F. Perdrisat, E.A. Strokovski, Dubna, Deuteron-93 Simp., 31-40.) (см. Рис. ??). Они связывают такое поведение с усилением вклада в поляризационные характеристики реакции от взаимодействия в конечном состоянии.

На Рис. ?? пунктирная кривая отвечает результатам

расчета κ_0 с использованием Парижской волновой фукции дейтрона и с учетом взаимодействия в конечном состоянии реакции ${}^{12}C(\vec{d},\vec{p})X$ (G.I. Lykasov, Physics of Particles and Nuclei, Vol.24 (1993) 59-76.). Видно, что учет эффектов перерассеяния позволяет существенным образом улучшить описание экспериментальных данных в исследованной области внутридейтронных импульсов без использования экзотических моделей дейтрона (например, предположения о существовании примеси от 6-кваркового состояния дейтрона).

Глава 5. Заключение.

Содержит основные реультаты проделанной работы, выносимые на защиту:

1. Создан детектор протонов отдачи для поляриметра АНОМАЛОН, позволивший эффективно выделять события от упругого протон-протонного рассеяния на анализирующей водородной мишени.

2. Создано программное обеспечение для обработки экспериментальных данных.

3. Измерен коэффициент передачи поляризации от дейтрона протону в реакции ${}^{12}C(\vec{d},\vec{p})X$ при угле вылета вторичного протона 0° в диапазоне внутридейтронных импульсов (в системе бесконечного импульса дейтрона) k от 0 до 550 МэВ/с. В области импульсов k от 0 до 370 МэВ/с полученные данные согласуются с данными других экспериментов. В области внутридейтронных импульсов k>420 МэВ/с данные получены впервые.

4. Показано, что результаты измерений в области k>300 МэВ/с существенно противоречат результатам расчета в рамках импульсного приближения с использованием

реалистических волновых функций дейтрона.

5. Показано, что результаты измерений можно описать, учитывая взаимодействие в конечном состоянии.

Приложение А. Измерение тензорной

анализирующей способности реакции

расщепления дейтрона на углероде.

Содержит описание методики и результаты измерений тензорной анализирующей способности T_{20} в реакции расщепления дейтрона на углероде при угле регистрации вторичных протонов 0°. Измерения проводились в 1993 г. на пучке тензорно поляризованных дейтронов синхрофазотрона ОИЯИ.

Результаты измерений представлены в таблице ??, а также на рисунке ?? совместно с данными других групп. Как видно из рисунка, полученные данные по T_{20} (черные квадратики) с учетом ошибок измерений находятся в удовлетворительном согласии с более ранними данными, полученными группой АНОМАЛОН (черные кружки), и с данными Сакле (белые квадратики) и группы АЛЬФА в Дубне (белые кружки) в области, где эти данные перекрываются.

Данные группы АНОМАЛОН имеют значительно меньшие ошибки в области k > 650 МэB/c, а две последние точки на рисунке при k=920 МэB/c и k=1000 МэB/c получены группой АНОМАЛОН впервые.

На рисунке для сравнения представлены следующие теоретические кривые.

Кривые 1, 2 и 3 рассчитаны на основе стандартных нуклон-нуклонных потенциалов (G.I. Lykasov, Physics

of Particles and Nuclei, Vol.24 (1993) 59-76.). Причем кривые 1 и 2 получены с использованием потенциала Рейда с мягким кором без учета (импульсное приближение) и с учетом взаимодействия в конечном состоянии, соответственно. Кривая 3 отвечает расчетам с Парижским нуклон-нуклонным потенциалом, в которых учитывалось взаимодействие в конечном состоянии реакции.

Кривая 4 соответсвует результатам расчета с учетом примеси 6-кваркого состояния в дейтроне (M.G.Dolidze, G.I.Lykasov, Z.Phys. A336 (1990) 339-344.).

Отметим, что в области k > 750 MeB/c все указанные выше кривые не описывают экспериментальные данные, которые демонстрируют асимптотическое стремление $T_{20} = -0.3$ значению так называемому Κ пределу КХД, предсказываемому расчетами на основе модели редуцированных ядерных амплитуд (S.J. Brobski, R.J. Hiller, Phys.Rev. C28 (1983) 475-482.).

По теме диссертации опубликованы следующие работы:

1. I.A. Golutvin, V.S. Khabarov, V.V. Perelygin, B.Yu. Semenov, V.N. Sotnikov, D.A. Smolin,..., A.A. Izotov et al., "Polarization Transfer in Deuteron Breakup at 0-degrees Measuring with 'ANOMALON' Polarimeter at JINR Synchrophasotron", JINR-E2-93-16, Jan 1993. 4pp., Contributed to 10th International Symposium on High Energy Spin Physics (SPIN 92 - 35th Yamada Conference), Nagoya, Japan, 9-14 Nov 1992. Published in Nagoya Spin Wkshp.(1992):501-504

k Мэ $\mathrm{B/c}$	δk Мэ $\mathrm{B/c}$	q Мэ $\mathrm{B/c}$	T_{20}
47	7	47	$-0,083 \pm 0,027$
275	10	235	$-0,833 \pm 0,057$
325	11	269	$-0,810 \pm 0,047$
375	12	301	$-0,790 \pm 0,072$
425	13	330	$-0,600 \pm 0,056$
475	14	358	$-0,583 \pm 0,049$
525	15	383	$-0,663 \pm 0,053$
575	17	406	$-0,572 \pm 0,060$
625	19	427	$-0,506 \pm 0,062$
675	21	447	$-0,570 \pm 0,093$
725	23	465	$-0,601 \pm 0,057$
775	25	481	$-0,520 \pm 0,053$
840	29	500	$-0,453 \pm 0,048$
920	35	521	$-0,400 \pm 0,063$
1000	38	539	$-0,351 \pm 0,116$

Таблица 2: T_{20} как функция внутридейтронного импульса k и qв системе бесконечного импульса и в системе покоя дейтрона, соответственно. Неопределенность определения δk импульса kобусловлена, главным образом, конечным импульсным захватом канала вторичных протонов ВП-1.

2. A.A. Nomofilov, V.V. Perelygin, V.F. Peresedov, A.E. Senner, V.I. Sharov, V.N. Sotnikov,..., A.A. Izotov, et al., "Measuement of Polarization Transfer in the Deuteron Breakup Reaction $d + {}^{12}C - > p(0^o) + X$ at Internal Momenta up to k = 550 MeV/c", Proceeding of the International Symposium DEUTERON-93 E2-94-95, pp.47-52, Dubna 1994.

3. A.A. Nomofilov, V.V. Perelygin, V.F. Peresedov, A.E. Senner, V.I. Sharov, V.N. Sotnikov,..., A.A. Izotov et al., "Measurement of Polarisation Transfer and the Tenzor Analysing

Power in Polarized Deuteron Breakup with Deuteron Momenta up to 9 GeV/c", Preprint JINR-E1-93-405 (1993) 8pp.

4. A.A. Nomofilov, V.V. Perelygin, V.F. Peresedov, A.E. Senner, V.I. Sharov, V.N. Sotnikov,..., A.A. Izotov, et al., "Measurement of Polarization Transfer and the Tenzor Analyzing Power in Polarized Deuteron Breakup with Deuteron Momenta up to 9 GeV/c", Phys.Lett., B325 (1994) 327-332.

5. E.V. Chernykh, A.A. Nomofilov, V.V. Perelygin, V.I. Sharov, D.A. Smolin, V.N., Sotnikov,..., A.A. Izotov et al., "Tensor Analyzing Power T(20) for D (POLARIZED) + C-12 \longrightarrow P + X AT Theta(P) = 0-degrees in the Region of High Internal Momenta in the Deuteron", Dubna JINR, 4(67)-94 (1995) 29-39.

6. T. Aono, E.V. Chernykh, T. Dzikowski, T. Hasegawa, N. Horikawa, T. Iwata, A.A. Izotov et al., "Measurement of the Tensor Analyzing Power T_{20} for $\vec{d} + {}^{12}C - > p(0^o) + X$ in the Region of High Internal Momenta in the Deuteron", Phys. Rev. Lett., 74 (1995) 4997-5000.

Carbon target area.

Secondary proton polarimeter ANOMALON.

Рис 1: Спектрометр АНОМАЛОН.

ī.

Рис 2: Спектр частиц по времени пролета.

Рис 3: Распределение по импульсам протонов, рассеянных на анализаторе поляриметра АНОМАЛОН.

Результаты измерения коэффициента передачи Рис 4: поляризации к₀ от векторно поляризованного дейтрона протону в реакции ${}^{12}C(\vec{d},\vec{p})X$ при угле вылета вторичного протона О° (черные квадратики) в зависимости от величины внутридейтронного импульса k в системе бесконечного импульса дейтрона. Белые квадратики, белые кружки и черные треугольники отвечают результатам работ (T. Dzikowski et al., JINR report E2-92-25 (1992) 181-184.), (E. Cheung et al., Phys. Lett. B284 (1992) 210-214.) u (B. Kuehn et al., Phys.Lett., В334 (1994), 298-303), соответственно (см.текст). Сплошная и штрих-пунктирная кривые соответствуют вычислениям в импульсном приближении с использованием Парижского потенциала и потенциала Рейда с мягким кором. Пунктирная кривая отвечает расчету с использованием Парижской волновой функции дейтрона и с учетом взаимодействия в конечном состоянии реакции ${}^{12}C(\vec{d},\vec{p})X$.

Рис 5: Тензорная анализирующая способность T_{20} в зависимости от коэффициента передачи поляризации к₀. Данные взяты из работы (B. Kuehn, C.F. Perdrisat, E.A. Strokovski, Dubna Deuteron-93 Simp., 31-40.)

23

Рис 6: Тензорная анализирующая способность T_{20} в зависимости от коэффициента передачи поляризации κ_0 . Данные по κ_0 получены в настоящей работе, а данные по T_{20} в последующем эксперименте в тех эксе кинематических условиях на установке АНОМАЛОН.

Рис 7: T_{20} как функция величины внутридейтронного импульса в системе покоя (q) и в системе бесконечного импульса (k) дейтрона. Белые кружски соответствуют данным работы (V.G. Ableev et al., JINR Rapid Comm. 1[52]-92 (1992), 10p.), белые квадратики - данным Сакле (С. F. Perdrisat et al., Phys. Rev. Lett., 59 (1987) 2840-2843.), черные квадратики и кружски данные двух наборов измерений на установке АНОМАЛОН.