

Nuclotron based Ion Colider fAcility

Статус эксперимента MPD-NICA

В. Рябов, ЛРЯФ ОФВЭ

MPD @ NICA

♦ One of two experiments at NICA collider to study heavy-ion collisions at $\sqrt{s_{NN}} = 4-11$ GeV

- Expected beam condition for the first year(s) :
 - ✓ not-optimal beam optics → wide z-vertex, $\sigma_z \sim 50$ cm
 - ✓ reduced luminosity (~10²⁵) → collision rate ~ 50 Hz
 - ✓ first beams: Bi+Bi / Xe+Xe at $\sqrt{s_{NN}} \le 7 \text{ GeV}$

Length	340 cm
Vessel outer radius	140 cm
Vessel inner radius	27 cm
Default magnetic field	0.5 T
Drift gas mixture	$90\% { m Ar}{+}10\% { m CH}_4$
Maximum event rate	7 kHz $(L = 10^{27} \text{ cm}^{-2} \text{s}^{-1})$

TPC: $|\Delta \phi| < 2\pi$, $|\eta| \le 1.6$ **TOF, EMC**: $|\Delta \phi| < 2\pi$, $|\eta| \le 1.4$ **FFD**: $|\Delta \phi| < 2\pi$, 2.9 < $|\eta| < 3.3$ **FHCAL**: $|\Delta \phi| < 2\pi$, 2 < $|\eta| < 5$

Commissioning and first data taking ~ 2025

Heavy-ion collisions

- Study QCD under extreme conditions of temperature and density
- Explore the QCD phase diagram, search for the QGP and study its properties

- ✓ primordial form of QCD matter at high temperatures and/or (net)baryon densities
- ✓ present during the first microseconds after Big Bang and in cores of the compact neutron stars / mergers
- ✓ provide important insights on the origin of mass for matter, and how quarks are confined into hadrons

High temperature: Early Universe evolution High baryon density: Inner structure of compact stars

At NICA, both BM@N and MPD study QCD medium at extreme net baryon densities

Status and performance

- MPD publications: over 200 in total for hardware, software and physics studies (SPIRES)
- ✤ First collaboration paper recently published EPJA (~ 50 pages): Eur.Phys.J.A 58 (2022) 7, 140

Status and initial physics performance studies of the MPD experiment at NICA

NICA operation modes

Discussing the option of NICA operation in the collider and fixed-target modes in the same campaign

- Fixed-target mode: one beam + thin wire (~ 100 μ m) close to the edge of the MPD central barrel:
 - ✓ extends energy range of MPD to $\sqrt{s_{NN}}$ = 2.4-3.5 GeV (overlap with HADES, BM@N and CBM)
 - ✓ solves problem of low event rate at lower collision energies (only ~ 50 Hz at $\sqrt{s_{NN}} = 4$ GeV at design luminosity)
 - ✓ backup start-up solution (too low luminosity, only one beam, etc.)

Unique capability of target and collision energy overlap between the experiments

Efficiency for $\pi/K/p/Ks/\Lambda$, $z_{vertex} = -85$ cm

Basic track selections: $N_{hits} > 10$; DCA < 2 cm; Primary particles ($R_{production} < 1$ cm)

✤ TPC-only tracks:

✤ TPC + TOF tracks:

MPD strategy

- ✤ MPD strategy high-luminosity scans in <u>energy</u> and <u>system size</u> to measure a wide variety of signals:
 - \checkmark order of the phase transition and search for the QCD critical point \rightarrow structure of the QCD phase diagram
 - \checkmark hypernuclei and equation of state at high baryon densities \rightarrow inner structure of compact stars, star mergers
- ♦ Scans to be carried out using the <u>same apparatus</u> with all the advantages of collider experiments:
 ✓ maximum phase space, minimally biased acceptance, free of target parasitic effects
 ✓ correlated systematic effects for different systems and energies → simplified extraction of physical signals
- Continuously develop physical program based on the recent advancements in the field:
 ✓ identified particle spectra and ratios, collective flow and femtoscopy, production of strangeness and hypernuclei net-proton fluctuations, global polarization of hyperond and spin alignment of vector mesons, dilepton continuum and LVMs, etc.

A Milestones for accelerator complex

Stages of the accelerator complex commissioning

- ✓ HILAC + transfer line to Booster → commissioned in 2018 with He¹⁺, Fe¹⁴⁺, C⁴⁺, Ar¹⁴⁺ and Xe²⁸⁺
- ✓ HILAC + Booster → first run in November-December, 2020 with He¹⁺
- ✓ HILAC + Booster + transfer line to Nuclotron → second run in October, 2021 with He¹⁺ and Fe¹⁶⁺
- ✓ HILAC + Booster + Nuclotron + transfer line to BM@N → third run in Jan. Apr., 2022 with C⁶⁺
- ✓ HILAC + Booster + Nuclotron + transfer line to BM@N -> fourth run in September, 2022 February, 2023 with Ar and Xe beams → 550+ M events at BM@N

Collider

Nuclotron-NICA transfer line

NICA collider

- ✤ Magnet and RF installation: by the middle of 2024
- First technological and cryogenic run of collider: end of 2024 beginning of 2025
- ✤ Fast extraction system from the Nuclotron: June of 2024
- Nuclotron-collider transfer line: Autumn of 2024
- ✤ First run with beams: 2025

Activities in the MPD Hall

Top platform (cryogenics, power supplies, control system)

Novosibirsk BINP magnetic field mapper

- Aluminum (carbon fiber plastic) guiding rod
- End cap fixation
- Intermediate support 4. Carbon fiber plastic carriage

Paramete Value ngth of movement for R all 3D sensor all 3D sensor accuracy 5 mm aa of auide lin ht of mappe

Reading time per one measurement

Chimney

Cryogenic platform

Carbon fiber support frame sagita ~ 5 mm at full load

- Yoke, TRIM coils, top platform, chimney assembled, ongoing tests of the refrigerators and control Dewar **
- Cooling to LN2 and LHe temperatures in the beginning of $2024 \rightarrow MF$ measurements \rightarrow central support ** frame

1 sec

NICA Electromagnetic calorimeter (ECAL)

- Sampling calorimeter with projective geometry (~70 tons):
 - \checkmark 25 sectors (50 half-sectors); 2400 modules; 38,400 "shashlyk"-type Pb-Sc towers with segmentation of 4x4 cm²
- ✤ 1600 modules (66%) have been produced (800 in Russia + 800 in China)
- ♦ Production of additional 400 modules in Russia is ongoing, use Russian-made WLS fibers \rightarrow 83% in total
- ✤ Mass production of half-sectors in JINR by international team, 18 half-sectors assembled

Half-sectors at different stages of assembly

ECAL installation in the MPD: August, 2024

Time-of-Flight (TOF)

- ✤ The production of MRPC detectors was completed in September 2022, (107%) chambers
- ♦ TOF modules are assembled \rightarrow long-term cosmic ray tests
- Electronics & cables, HV distribution modules, installation equipment in stock

TOF installation bench in LHEP

* The equipment for installing the modules in the MPD is ready for use and stored in the laboratory

TOF installation in the MPD: September, 2024

NICA Time Projection Chamber (TPC)

- TPC cylinders, central membrane and service wheels are ready, final vessel assembly by the end of 2023
- Read-out chambers (ROCs) 24 tested chambers in stock + 4 tested spare chambers

- ✤ Gas system ready testing
- ✤ TPC FE electronics status:
 - ✓ 65% manufactured (967 pc)
 - ✓ no more problems with components → 100% available

- ✤ On critical path:
 - ✓ TPC rails prod./inst. October-November, 2023
 - ✓ TPC cooling system (INP BSU, Belarus): FEE cooling ready by Spring, 2024; thermostabilization panels by September, 2024;

TPC installation in the MPD: end of 2024

NICA Forward subsystems in production

FHCAL

FHCAL modules have been produced and tested \rightarrow installation in 2024

 1.9° < |θ| < 7.3°</td>
 FFDw

 2.7< |η| < 4.1</td>
 P

 Au
 IP
 Au

 P
 P
 Au

 Box with quartz radiator
 HV divider

 Pb converter
 HV divider

FEE board

Cherenkov modules of FFDE and FFDW are available, mechanics of FFD sub-detectors is available for installation in container with vacuum beam tube

Beam and luminosity monitoring

Measurement of transverse sizes of the bunches Transvers and longitudinal convergence of bunches Vertices distribution along the beam

- Two sets by 32 scintillator counters readout by SIMPs from both sides
- Observables & methods:
 - ✓ counting rate and z-vertex distribution ($\sigma_{z-vertex} \sim 5$ cm with $\delta \tau \sim 300$ ps)
 - ✓ Van der Meer and ΔZ scans for optimization of beam optics
- Beam tests of prototypes
- Mass production of scintillator detectors

FFD

MPD physics program

G. Feofilov, A. Aparin	V. Kolesnikov, Xianglei Zhu		K. Mikhailov, A. Taranenko
 Global observables Total event multiplicity Total event energy Centrality determination Total cross-section measurement Event plane measurement at all rapidities Spectator measurement 	 Spectra of light flavor and hypernuclei Light flavor spectra Hyperons and hypernuclei Total particle yields and yield ratios Kinematic and chemical properties of the event Mapping QCD Phase Diag. 		 Correlations and Fluctuations Collective flow for hadrons Vorticity, Λ polarization E-by-E fluctuation of multiplicity, momentum and conserved quantities Femtoscopy Forward-Backward corr. Jet-like correlations
D. Peresunko, Chi Yang		Wangmei Zha, A. Zinchenko	
 Electromagnetic probes Electromagnetic calorimeter meas. Photons in ECAL and central barrel Low mass dilepton spectra in-medium modification of resonances and intermediate mass region 		 Heavy flavor Study of open charm production Charmonium with ECAL and central barrel Charmed meson through secondary vertices in ITS and HF electrons Explore production at charm threshold 	

MPD mass productions

- ✤ Physics feasibility studies using centralized large-scale MC productions → consistent picture of the MPD physical capabilities with the first data sets, preparation for real data analyses
- https://mpdforum.jinr.ru/c/mcprod/26:

Request 25: General-purpose, 50M UrQMD BiBi@9.2 \rightarrow DONE Request 26: General-purpose (trigger), 1M DCM-QGSM-SMM BiBi@9.2 \rightarrow DONE Request 27: General-purpose (trigger), 1M PHQMD BiBi@9.2 \rightarrow DONE Request 28: General-purpose with reduced magnetic field, 10M UrQMD BiBi@9.2 \rightarrow DONE Request 29: General-purpose (hypernuclei), 20M PHQMD BiBi@9.2 \rightarrow DONE Request 30: General-purpose (hyperon polarization), 15M PHSD BiBi@9.2 \rightarrow DONE Request 31: General-purpose (femtoscopy), 50 M UrQMD BiBi@9.2 with freeze-out \rightarrow DONE Request 32: General purpose (flow), 15M vHLLE+UrQMD with XPT \rightarrow DONE Request 33: General purpose (FXT), (11 x 3)M UrQMD (mean field) \rightarrow DONE

- Production comparable in size to the first expected real data samples test the existing computing and software infrastructure
- Develop realistic analysis methods and techniques, set priorities and find group leaders

Handling the big data sets

- Centralized Analysis Framework for access and analysis of data:
 - \checkmark consistent approaches and results across collaboration, easier storage and sharing of codes and methods
 - \checkmark reduced number of input/output operations for disks and databases, easier data storage on tapes
- Analysis manager reads event into memory and calls wagons one-by-one to modify and/or analyze data:

- The Analysis manager and the first Wagons have been created, in MpdRoot @ mpdroot/physics
- Eventually all analysis codes will be committed to MpdRoot as Wagons
- ♦ The Train will run on a group of DST files, ~ 50k events → 1000 jobs for 50M production
- ✤ Results for all analyses/wagons run on a big production (~ 50 M events) in a day
- First runs of the Analysis Train started in August

Multi-Purpose Detector (MPD) Collaboration

MPD International Collaboration was established in **2018** to construct, commission and operate the detector

12 Countries, >500 participants, 38 Institutes and JINR

Organization

Acting Spokesperson: Deputy Spokespersons: Institutional Board Chair: Project Manager: Victor Riabov Zebo Tang, Arkadiy Taranenko Alejandro Ayala Slava Golovatyuk

Joint Institute for Nuclear Research, Dubna;

A.Alikhanyan National Lab of Armenia, Yerevan, Armenia; SSI "Joint Institute for Energy and Nuclear Research – Sosny" of the National Academy of Sciences of Belarus, Minsk, Belarus University of Plovdiv, Bulgaria; Tsinghua University, Beijing, China; University of Science and Technology of China, Hefei, China; Huzhou University, Huzhou, China; Institute of Nuclear and Applied Physics, CAS, Shanghai, China; Central China Normal University, China; Shandong University, Shandong, China; University of Chinese Academy of Sciences, Beijing, China; University of South China, China; Three Gorges University, China; Institute of Modern Physics of CAS, Lanzhou, China; Tbilisi State University, Tbilisi, Georgia; Institute of Physics and Technology, Almaty, Kazakhstan; Benemérita Universidad Autónoma de Puebla, Mexico; Centro de Investigación y de Estudios Avanzados, Mexico; Instituto de Ciencias Nucleares, UNAM, Mexico; Universidad Autónoma de Sinaloa. Mexico: Universidad de Colima, Mexico; Universidad de Sonora. Mexico: Universidad Michoacana de San Nicolás de Hidalgo, Mexico Institute of Applied Physics, Chisinev, Moldova; Institute of Physics and Technology, Mongolia;

Belgorod National Research University, **Russia**; Institute for Nuclear Research of the RAS, Moscow, **Russia**; High School of Economics University, Moscow, **Russia**; National Research Nuclear University MEPhI , Moscow, **Russia**; Moscow Institute of Science and Technology, **Russia**; North Osetian State University, **Russia**; National Research Center "Kurchatov Institute", **Russia**; Peter the Great St. Petersburg Polytechnic University Saint Petersburg, **Russia**; Plekhanov Russian University of Economics, Moscow, **Russia**; St.Petersburg State University, **Russia**; Skobeltsyn Institute of Nuclear Physics, Moscow, **Russia**; Vinča Institute of Nuclear Sciences, **Serbia**; Pavol Jozef Šafárik University, Košice, **Slovakia** 8

Summary

- MPD construction and preparations for data taking are ongoing
- MPD commissioning and first data taking in 2025
- MPD has a solid physics program and can potentially provide unique results on the structure of the QCD phase diagram, provide insight into inner structure of compact start and neutron star mergers
- Develop realistic analysis techniques and tools using simulated data samples

BACKUP

В. Рябов - МРД, сессия ОФВЭ - 2023