Петербургский институт ядерной физики им. Б. П. Константинова ( Национального исследовательского центра «Курчатовский институт»





# иSR-ИССЛЕДОВАНИЯ НА СИНХРОЦИКЛОТРОНЕ НИЦ «КУРЧАТОВСКИЙ ИНСТИТУТ» - ПИЯФ

Воробьев С.И.

НАУЧНАЯ СЕССИЯ ОТДЕЛЕНИЯ ФИЗИКИ ВЫСОКИХ ЭНЕРГИЙ, 26 - 29 декабря 2023 г.









#### µSR-исследование магнитных свойств феррожидкости

Совместно: Объединенный институт ядерных исследований (Дубна); Horia Hulubei National Institute of Physics and Nuclear Engineering (Bucharest, Romania); «University POLITEHNICA of Bucharest (Bucharest, Romania)

## Изучение феррожидкости на основе

Fe<sub>3</sub>O<sub>4</sub> (4,7%) в D<sub>2</sub>O

И

СоFe<sub>2</sub>O<sub>4</sub> (0,5% и 3%) в H<sub>2</sub>O

Исследуемая феррожидкость Fe<sub>3</sub>O<sub>4</sub>/2DBS/D<sub>2</sub>O представляла собой суспензию нанодисперсного магнетита  $Fe_3O_4$  в тяжелой воде  $D_2O_2$ , стабилизированного ПАВ додецилбензолсульфанатовой кислотой 2DBS. Магнитные частицы вместе с окружающей их стабилизирующей кислотой имели средний диаметр d = 118,9 Å со стандартным отклонением о = 6,7 Å. Объемная концентрация магнитных частиц составляла 4,7%. Магнитное ядро из Fe<sub>3</sub>O<sub>4</sub> имело средний диаметр 70 Å. В 1 мл феррожидкости- 0,244 г магнетита, а на 1 г Fe<sub>3</sub>O<sub>4</sub> приходится 0,3 г ПАВ. Феррожидкость находилась в кювете из меди с суммарной толщиной стенок 100 мкм. Количество исследуемого вещества в направлении пучка составляло около 1,2 г/см<sup>2</sup>

Образцы феррожидкости CoFe<sub>2</sub>O<sub>4</sub>/LA/DDS-Na/H<sub>2</sub>O представляли собой суспензии нанодисперсного феррита кобальта СоГе<sub>2</sub>О<sub>4</sub> в бидистиллированной воде Н<sub>2</sub>О, стабилизированные двумя слоями ПАВ (диэтилдитиокарбомат натрия (DDS-Na) и лоуриновая кислота(LA)). Объемная концентрация магнитных частиц составляла 0,5% и 3%. Средний диаметр 85 Å. При концентрации 3% в 1 мл феррожидкости содержалось 0,17г феррита кобальта, а на 1 г СоГе<sub>2</sub>О<sub>4</sub> приходилось 0.25 г ПАВ.



Зависимость доли асимметрии мюонной компоненты от температуры в образцах



## Изучение распределения магнитных наночастиц в эластомерной матрице

Образцы эластомера с объемной концентрацией 0%, 1%, 5%, 10%, 15% однодоменных наночастиц  $CoFe_2O_4$  (покрытых слоем додецилсульфата натрия  $NaCH_3(CH_2)_{11}OSO_3$  (SDS) и слоя лауриновой кислоты,  $C_{11}H_{23}COOH$  (LA).

Sample volume=32cm<sup>3</sup>

| Po : | $0_1 = 0\%$ | at | H=0kA | /m |
|------|-------------|----|-------|----|
|      | +1 •/•      |    |       | ., |

- $P_1: \Phi_1=1\%$  at H=0kA/m;
- $P_2: \Phi_1=5\%$  at H=0kA/m;
- P<sub>3</sub>:Φ<sub>1</sub>=10% at H=0kA/m;
- P<sub>4</sub>:Φ<sub>1</sub>=15% at H=0kA/m.

| $P_{1m}: \Phi_1=1\%$  | at | H=80kA/m; |
|-----------------------|----|-----------|
| $P_{2m}: \Phi_1=5\%$  | at | H=80kA/m; |
| $P_{3m}: \Phi_1=10\%$ | at | H=80kA/m; |
| $P_{4m}: \Phi_1=15\%$ | at | H=80kA/m. |



В отличие от феррожидкостей, в эластомерной матрице направление легкой оси магнитных наночастиц друг относительно друга и с макроскопическим образцом фиксированы и не могут быть изменены внешним магнитным и электрическим полями. Однако направление легкой оси наночастиц в образце зависит от условий изготовления образца эластомера. Применение внешнего магнитного поля в процессе отверждения образца может изменить распределение частиц в объеме образца и распределение ориентации легкой оси наночастиц в пространстве.

Магнитные и другие свойства, представляющие интерес для практического применения эластомера, могут варьироваться в зависимости от концентрации и распределения наночастиц в объеме образца, а также от простого пространственного распределения наночастиц.



R = -OH, -CH=CH<sub>2</sub>, -CH<sub>3</sub>, or another alkyl or aryl group

Sample volume=32cm<sup>3</sup>

| $P_0: \Phi_1=0\%$                    | at H=0kA/m; |
|--------------------------------------|-------------|
| $P_1: \Phi_1=1\%$                    | at H=0kA/m; |
| Ρ2:Φ1=5%                             | at H=0kA/m; |
| P <sub>3</sub> : Φ <sub>1</sub> =10% | at H=0kA/m; |
| $P_4: \Phi_1=15\%$                   | at H=0kA/m. |
|                                      |             |

| P <sub>1m</sub> : Φ <sub>1</sub> =1% | at | H=80kA/m; |
|--------------------------------------|----|-----------|
| P <sub>2m</sub> : Φ <sub>1</sub> =5% | at | H=80kA/m; |
| $P_{3m}: \Phi_1=10\%$                | at | H=80kA/m; |
| $P_{4m}: \Phi_1=15\%$                | at | H=80kA/m. |



Рис. 1. Образцы эластомеров.





Фотография образца Р0 (0% наночастиц CoFe<sub>2</sub>O<sub>4</sub>) Фотография образца Р4 (15% наночастиц СоFe<sub>2</sub>O<sub>4</sub>)

Для исследования µSR-методом магнитных свойств магнитореологических эластомеров были изготовлена образцы в виде дисков диаметром 64 мм и толщиной 9 мм.

В качестве матрицы использована силиконовая резина (silicon rubber (SR), Globasil AD 27 type, from Globalchimica SRL), в которую перед полимеризацией вводилась феррожидкость. Феррожидкость с 3% концентрацией магнитных наночастиц в воде была стабилизирована с использованием в качестве ПАВ додецилсульфат натрия  $CH_3(CH_2)_{11}SO_4Na$  с плотностью  $\rho = 1.01 \ 2/cm^3$  и лауриновой кислоты  $C_{11}H_{23}COOH$  с плотностью  $\rho = 0.88 \ 2/cm^3$ . Один *мл* феррожидкости содержал 0.17 *г* феррита кобальта, а на 1 *г* CoFe<sub>2</sub>O<sub>4</sub> приходилось 0.25 *г* ПАВ.

Исследованные образцы были синтезированы в Институте технической химии УО РАН. Предварительно проводилось двукратное сепарирование наночастиц по размерам на центрифуге «Biofuge 15R» в течении 60 *минут* при 6000 *об/мин*.

Распределение частиц по размерам было исследовано в Центре перспективных технологий (Сколково) с использованием трансмиссионного электронного микроскопа высокого разрешения LEO 912 AB OMEGA с ускоряющим напряжением 120 кВ.

Распределение наночастиц по размерам аппроксимировано функцией логарифмически нормального распределения и определены следующие значения параметров:  $D_0 = 7.8 \pm 0.1 \ \text{нм}, \ \sigma = 0.40 \pm 0.01 \ \text{нм}$  с математическим ожиданием  $\overline{D} = D_0 \cdot exp(\sigma^2/2) = 8.5 \ \text{нм}$ .

Подготовлено два набора образцов с концентрацией 0, 5, 10 и 15% с неупорядоченной и с упорядоченной ориентацией магнитных моментов наночастиц CoFe<sub>2</sub>O<sub>4</sub>.

Полимеризация образцов второго набора была проведена в магнитном поле 80 кА/м, перпендикулярном плоскости диска.

На рисунке 1 показано поведение асимметрии в зависимости от концентрации наночастиц в образце. Видно, что проводящие свойства образцов не зависят от концентрации примеси. Во всех образцах больше половины остановившихся мюонов образуют мюоний и быстро теряют поляризацию за время меньше 9 нс.

На рисунке 2 показано поведение параметра  $\lambda$  в зависимости от концентрации магнитных наночастиц в образцах. Наблюдается устойчивый рост скорости релаксации поляризации мюонов, остановившихся в образце, по мере увеличения количества наночастиц СоFe<sub>2</sub>O<sub>4</sub> в исследуемых образцах. В образцах P<sub>m</sub> с упорядоченным состоянием магнитных моментов наночастиц наблюдается небольшое замедление роста параметра релаксации поляризации с увеличением количества примесных наночастиц.



Рис. 1. Зависимость амплитуды прецессии спина мюона от величины концентрации CoFe<sub>2</sub>O<sub>4</sub>.



Рис. 2. Зависимость скорости релаксации поляризации мюона от концентрации наночастиц CoFe<sub>2</sub>O<sub>4</sub>: чёрные квадраты – Р образцы, синие треугольники – Р<sub>m</sub> образцы и красная точка – медный образец.



Рис. Зависимость частоты прецессии спина мюона от концентрации наночастиц  $CoFe_2O_4$  при температуре 290 К в магнитном поле H = 612 Гс: чёрные квадраты – Р образцы, синие треугольники –  $P_m$  образцы и красная точка – медный образец.





Рис. Зависимость скорости деполяризации мюона от магнитного поля: квадраты – эластомер Р4 (15% CoFe<sub>2</sub>O<sub>4</sub>), красные точки - образец эластомера Р2 (5% CoFe<sub>2</sub>O<sub>4</sub>), синие треугольники - феррожидкость 3% CoFe<sub>2</sub>O<sub>4</sub>, делённые на 5, зелёные треугольники – Cu.

Рис. Зависимость сдвига частоты прецессии спина мюона от величины внешнего магнитного поля при T = 290 К в эластомере P4 (15% CoFe<sub>2</sub>O<sub>4</sub>). Вид этой зависимости характерен для парамагнетика (суперпарамагнетика) во внешнем поле. Добавка к внешнему полю достигает почти 2 Гс (1.96(17) Гс).

#### Исследования необходимо продолжить

µSR-эксперименты по исследованию наноструктурного образца CuO



Образец оксида меди CuO впервые был изготовлен по новой технологии путем электродугового испарения графитового электрода, содержащего медь. Получены предварительные результаты измерения магнитной восприимчивости **χ**.

Исследования будут продолжены для температур ниже комнатной. Параллельно проводятся измерения магнитной восприимчивости χ на имеющемся в лаборатории криомагнетометре, позволяющем проводить исследования в магнитных полях до 0,5 кГс при температурах 180-300 К.



Рис. 1. Принципиальная схема экспериментальной установки



Рис. 2. Схема конструкции магнитометра: 1 – криогенератор; 2 – задающий соленоид; 3 – исследуемый образец; 4 – измерительный соленоид; 5 – опорный соленоид; 6 – вибрационная развязка; 7 – биметаллическая шахта криостата; 8 – вакуумная изоляция; 9 – верхний фланец криостата;

10 – держатель трансформатора взаимоиндукции; 11 – разъем для сигнальных проводов;

12, 13 – штуцеры для подвода и откачки хладагента; 14 – тепловая изоляция; 15 – тепловой перехват; 16 –экран для перехвата теплового излучения; 17 – первая ступень криогенератора

И.Ю. Иванов, А.А. Васильев, М.Е. Взнуздаев, С.И. Воробьев, А.Л. Геталов, С.А. Котов, П.А. Кравцов, А.В. Надточий, В.А. Трофимов. Измерение динамической магнитной восприимчивости сталей в криогенных условиях.

Научно-технический вестник информационных технологий, механики и оптики, 2012, №3 (79) стр. 105 - 109.







Налажено сотрудничество с Лабораторией химии и спектроскопии углеродных материалов Отдела наноструктурированных материалов ОПР. Исследования посвящены изучению магнитных свойств наноструктурных образцов оксида меди СuO и эндометаллофуллеренов С<sup>60</sup>@Fe (в перспективе и с редко-земельными ионами).

К настоящему моменту есть результаты измерения магнитной восприимчивости прекурсора FeC<sup>x</sup>, а также образца эндометаллофуллерена Fe@C<sup>60</sup> в диапазоне температур 170К – 300К в нулевом магнитном поле. Результаты демонстрируются на рисунках:





Сигнал в единицах мВ пропорционален магнитной восприимчивости и должен быть отнормирован по результатам калибровки на магнитометре. Образцы отправлены для калибровки в СПбГУ.

Мы намерены в дальнейшем исследовать гистерезисные свойства этих материалов в магнитном поле, а также провести соответствующие µSR-измерения на ускорителе ПИЯФ.



Интересно магнитное взаимодействие между суперпарамагнитными частицами на примере наночастиц ферригидрита (номинальная химическая формула Fe<sub>2</sub>O<sub>3</sub>·nH<sub>2</sub>O).

Во взаимодействующих частицах возникает две несвязанные (или слабосвязанные) магнитные системы - поверхностные спины и результирующий момент частиц. Соответственно, локальные магнитные поля в этих подсистемах будут разные, как за счёт магнитного окружения, так и за счёт разной скорости релаксации.

Идея такая – с помощью вращения спина мюона посмотреть магнитную релаксацию образца с взаимодействиями и без них. И попробовать по разнице спектров оценить влияние взаимодействий на динамику спинов.



Условия образования ферригидрита существенно влияют на физические свойства его наночастии, в частности, на его кристалличность взаимодействия между отдельными частииами. Магнитные U свойства, и соответственно применение, сильно зависят от структуры обеспечивает частицы. Плотное ядро наночастицам лучшие магнитные свойства и делает его более подходящим для применения в медицине, к примеру, для доставки лекарств или точечного теплового воздействия на очаги заболеваний в организме», — прокомментировал Юрий Князев. кандидат результаты исследования физиконаучный сотрудник математических наук, Института физики им. Л.В. Киренского Красноярского научного центра СО РАН.

https://ksc.krasn.ru/news/razmer\_vazhen\_tolko\_krupnye\_nanochastitsy\_iz\_b akteriy\_mogut\_primenyatsya\_v\_meditsine/?ysclid=lqlz9amc4h162159450

### Замкнутая система охлаждения исследуемых образцов на базе современного криогенератора



**Модернизация криогенной части µSR-установки** вызвана, прежде всего, необходимостью сократить потери хладагента (гелия), которые на настоящий момент составляют 20%. Проведение мер изложенных ниже позволит снизить эти потери до минимума (~ 1%).

Для проведения µSR-исследований предлагается криостат с принудительной циркуляцией гелия по всему замкнутому криогенному контуру, где охлаждающий хладагент непосредственно обдувает исследуемый объект. Такая конструкция снизит потери хладагента до 1 – 1,5%, так как позволит отказаться от использования сосуда Дьюара.

**Чтобы работа криостата и криогенератора была стабильной**, а также исключить приток тепла **необходимо** организовать систему с высоким уровнем вакуума, это потребует **наличие турбомолекулярного насоса** с пультом управления и вакуумного контроля, **а также чиллер для отвода тепла**.

Для того, чтобы закончить модернизацию криогенной части µSR-установки требуется закупка иностранного оборудования:

| №<br>п/п | Наименование иностранного<br>оборудования, изготовитель, страна<br>происхождения | Возможность закупки аналогов                                                      |
|----------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| 1.       | Турбомолекулярный насос Agilent                                                  | Ограничена, отечественных аналогов нет, возможна замена на другого производителя: |
|          | Turbo-V 81-T, Agilent Technologies,                                              | - Вакуумный Насос с Контроллером FF-100/150E, DN100ISO-К                          |
|          | Германия.                                                                        | Производитель: KYKY Technology Development LTD                                    |
|          |                                                                                  | - Вакуумный Насос с Контроллером FF-63/80E DN63 ISO-К                             |
|          |                                                                                  | Производитель: KYKY Technology Development LTD                                    |
| 2.       | Чиллер для охлаждения воды ОМІ                                                   | Ограничена, отечественных аналогов нет, возможна замена на другого производителя: |
|          | CHA 11, STD OMI, Италия.                                                         | Чиллер RSA-U5, 12600 кКал/час (Китай)                                             |

Выполнение мероприятий по модернизации µSR-установки позволит завершить создание замкнутой системы охлаждения исследуемых образцов, что, в свою очередь, даст возможность проведения более полных исследований магнитных свойств материалов в температурном диапазоне от 20 К до 300 К.





## Модернизация вакуумной системы

В ПИЯФ мюонный метод начал развиваться с 1976 года, когда был пущен в эксплуатацию мюонный канал синхроциклотрона (СЦ-1000). Мюонному каналу уже более 45 лет. На протяжении всего времени эксплуатации канал ни разу не модернизировался. В целях улучшения его характеристик и повышения возможностей µSR-установки предлагается понизить рассеяние пучка мюонов в канале. Для этого необходимо провести модернизацию вакуумной части канала. Улучшение вакуума приведет к увеличению интенсивности пучка, что даст выигрыш по временному набору статистических данных и позволит при коллимации уменьшить размер падающего на образец пучка с интенсивностью, не хуже существующей на настоящий момент, даст возможность уменьшить импульс ансамбля мюонов с 90 МэВ/с до 60 МэВ/с. Это позволит проводить исследования с образцами меньшими по диаметру и толщине, т.к. изготовление образцов больших размеров связано с большими затратами и не всегда возможно с технической точки зрения.

Газовая нагрузка в вакуумной части µ-канала определяется потоком теплового газовыделения с поверхности конструктивных материалов и неконтролируемым атмосферным натеканием через микротрещины, сварные швы, разъемные соединения и т.п. Для высоковакуумной откачки можно использовать молекулярный турбонасос ТМН-500. Предварительный вакуум для работы ТМН-500 создаст форвакуумный насос (ФН) AB3-20.

Сопутствующими и необходимыми приборами и материалами для успешной работы µ-канала являются:

| Наименование                                           | Кол-во, шт. |
|--------------------------------------------------------|-------------|
| Вакуумметр цифровой                                    | 1           |
| Вакуумметр стрелочный                                  | 1           |
| Преобразователь (лампа ПМТ-2)                          | 3           |
| Преобразователь (лампа ПМИ-2)                          | 3           |
| Преобразователь (лампа ПМТ-4)                          | 3           |
| Вакуумные шланги                                       |             |
| Клапан эл. магнитный КМУ-25                            | 2           |
| Затвор вакуумный ЗВЭ-100                               | 3           |
| Вакуумметр теплоэлектрический блокировочный 13 ВТЗ-003 | 3           |
| Азотная ловушка                                        | 1           |

## иSR-ИССЛЕДОВАНИЯ МАГНИТНЫХ СВОЙСТВ ЛЕГИРОВАННЫХ МАНГАНИТОВ ЛАНТАНА



T/T<sub>N</sub> (T<sub>N</sub> = 66 K)

T/T, (T, = 66 K)

