Проект NICA

В. Рябов, ЛРЯФ ОФВЭ

NICA Nuclotron based Ion Colider fAcility

Цели проекта NICA/MPD

- Изучение плотной и горячей ядерной материи, образующейся в столкновениях тяжелых ионов, в области энергий взаимодействия, соответствующей максимальной барионной плотности
- Продолжение экспериментов на RHIC и LHC при существенно меньших энергиях взаимодействия, 100-1000 ГэВ → 4- 11 ГэВ

NICA/MPD, физическая программа

Physics targets for the exploration of the QCD phase diagram accessible to NICA and possible observables for a "mixed phase" in the release of the "NICA White Paper" as a Topical Issue of the EPJ A (July 2016).

- Bulk properties, EOS:
 - particle spectra & ratios
 - HBT femtoscopy
 - flow
- In-medium modification of hadron properties - onset of low-mass dilepton enhancement, LVM
- Strange DoF in nuclei, Y-N interactions:
 hypernuclei
- Deconfinement, chiral phase transition:
 - strangeness production
 - chiral magnetic effect, $\boldsymbol{\Lambda}$ polarization
- QCD Critical Point:
 - event-by-event fluctuations & correlations

$NICA/MPD \leftrightarrow STAR/NA61/CBM$

- Все эксперименты имеют сравнимое покрытие по энергии взаимодействия
- Специализированные установки (CBM, NICA/MPD) позволяют изучать редкие сигналы за счет более высокого темпа набора статистики
- NICA/MPD коллайдерная установка, одновременно обладающая симметричным аксептансом и позволяющая измерять редкие сигналы

Инфраструктура NICA

Ring circumference, m	503,04
Number of bunches	22
r.m.s. bunch length, m	0,6
max. int. Energy, Gev/u	11,0
r.m.s. /p/p. 10-3	1.6
Luminosity, cm ⁻² s ⁻¹	1x10 ²⁷

- Modernization of existing accelerator facility
 - Construction of collider complex to collide: - relativistic ions from p to Au, $\sqrt{s_{NN}} = 4-11$ GeV
 - polarized p and d, $\sqrt{s_{NN}} = 27 \text{ GeV}(p)$

В. Рябов, 2018

•

Строительство коллайдера NICA

- Система инжекции (источники ионов, & Linacs) запущены в 2016
- Магниты производятся в Дубне (готовы для Booster), там же где и для SIS-100/FAIR
- Booster в процессе строительства, монтаж магнитов с 09.2018, запуск в 2019
- Система электронного охлаждения финальная стадия испытаний и запуска
- NICA/MPD сстроительство тоннелей и экспериментальных залов
- MPD зал должен быть готов к установке оборудования в 2019 году

MPD, Phase-I

- Стадия I: TPC, TOF, FFD, FCAL и ECAL
- Запуск в строй начнется в 2020

MPD, Phase-II

- Стадия I: TPC, TOF, FFD, FCAL и ECAL
- Стадия II: ... + ITS + EndCap (CPC, Straw, TOF, ECAL)

МРD – центральный магнит

- Производители: ASG (Genova) и Vitkovice HM
- План производства:
 - ✓ конец 2018 сборка и испытание сверхпроводящих обмоток
 - ✓ март 2019 готовность соленоида
 - ✓ май 2019 транспортировка в Дубну
 - ✓ октябрь 2019 сборка магнита в экспериментальном зале

TPC – Time Projection Chamber

12∃

10

8

6 4

2

Գ

0.2 0.4 0.6 0.8

Item	Dimension
Length of the TPC	340cm
Outer radius of vessel	140cm
Inner radius of vessel	27 cm
Outer radius of the drift volume	133cm
Inner radius of the drift volume	34cm
Length of the drift volume	170cm (of each half)
HV electrode	Membrane at the center of the TPC
Electric field strength	~140V/cm;
Drift gas	90% Ar+10% Methane, Atmospheric pres. + 2 mbar
Gas amplification factor	~ 10 ⁴
Drift velocity	5.45 cm/µs;
Drift time	< 30µs;
Temperature stability	< 0.5°C
Number of readout chambers	24 (12 per each end-plate)
Segmentation in ϕ	30°
Pad size	5x12mm ² and 5x18mm ²
Number of pads	95232
Pad raw numbers	53
Maximal event rate	< 7 kHz (Lum. 10 ²⁷)
Electronics shaping time	~180 ns (FWHM)
Signal-to-noise ratio	30:1
Signal dynamical range	10 bits
Sampling rate	10 MHz
Sampling depth	310 time buckets

1 1.2 1.4 1.6 1.8 2 Pseudorapidity

Primaries: $N_{hits} > 14$, $p_{\tau} > 0.1$ GeV/c

TPC – Time Projection Chamber

C2

Length: 3.4 m
Diameter: 0.676 m

C3

Length: 3.4 mDiameter: 2.66 m

C4

- Length: 3.4 m
- Diameter: 2.814 m

Length: 3.4 mDiameter: 0.54 m

Start TPC assembly

FE electronics:

512 ch system test with ROC chamber. SAMPA chips (4500 pc)

ROC chambers:

frames (26 pc) serial pad planes (30 pc) HV for ROC gate electrode test chamber with 512 ch r/o system

- Dec 2018
- tests ongoing
- Dec 2018
- payment in progress
- readyordering started
- design started

– Dec 2018

TOF – Time Of Flight

Main parameters of the TOF system.

	Number	Number of	Sensitive	Number of	Number of
	of	readout	area, m ²	FEE cards	FEE
	detectors	strips			channels
MRPC	1	24	0.192	2	48
Module	10	240	1.848	20	480
Barrel	280	6720	51.8	560	13440
					(1680 chips)

High Voltage, kV

FFT – Fast Forward Detector

The FFD sub-detector consists of 20 modules based on Planacon MCP-PMTs

- FFD provides information on
- fast triggering of Au-Au collision
 - start signal for TOF
 - bunch crossing region position

15 mm quartz radiator 10 mm Lead converter

The delay of charged particle arrival in FFD modules in comparison with arrival time of photons for Au + Au collisions at $\sqrt{s_{NN}} = 5$ (red) and 11 (blue) GeV and FFD position of 140 cm.

FHCAL – Forward Hadron CALorimeter

• Two-arms at \sim 3.2 m from the interaction point.

- Each arm consists of 45 individual modules.
- Module size $150x150x1100cm^3$ (55 layers)
- Pb(16mm)+Scint.(4mm) sandwich
- 7 longitudinal sections
- 6 WLS-fiber/MAPD per section
- 7 MAPDs/module

LA-OGSM

9 GeV

20 - 20 %

500

ECAL – Electromagnetic CALorimeter

MPD - Collaboration

Baku State University, NNRC, **Azerbaijan**; University of Plovdiv, **Bulgaria;** University Tecnica Federico Santa Maria, Valparaiso, **Chili**; Tsinghua University, Beijing, **China**; USTC, Hefei, **China**; Huizhou University, Huizhou, **China**; Institute of Nuclear and Applied Physics, CAS, Shanghai, **China**; Central China Normal University, **China**; Shandong University, Shandong, **China**; SPSU – Dept.

IHEP, Beijing, China; University of South China, China; Palacky University, Olomouc, Czech Republic; NPI CAS, Rez, Czech Republic; Tbilisi State University, Tbilisi, Georgia; Tubingen University, Tubingen, Germany; Tel Aviv University, Tel Aviv, Israel; Joint Institute for Nuclear Research; IPT, Almaty, Kazakhstan; UNAM, Mexico City, Mexico; Institute of Applied Physics, Chisinev, Moldova: WUT, Warsaw, Poland; NCN, Otwock – Swierk, Poland; UW, Wroclaw, Poland; Jan Kochanowski University, Kielce, Poland; INR RAS, Moscow, **Russia**; MEPhl, Moscow, Russia; PNPI, Gatchina, Russia; INP MSU, Moscow, Russia; SPSU - Dept. of NP, Russia; St. Petersburg, Russia; SPSU – Dept. of HEP, St. Petersburg, **Russia**; KI NRS, Moscow, Russia;

МРD – участие ПИЯФ

• Участие в коллаборации MPD:

Country 🗢	Institute name	First name(s)	♦ Lastname ♦
RUSSIA	PNPI, Gatchina, RUSSIA	Aleksei	Ezhilov
RUSSIA	PNPI, Gatchina, RUSSIA	Oleg	Fedin
RUSSIA	PNPI, Gatchina, RUSSIA	Vadim	Guzey
RUSSIA	PNPI, Gatchina, RUSSIA	Dmitrii	Ivanishchev
RUSSIA	PNPI, Gatchina, RUSSIA	Alexey	Khanzadeev
RUSSIA	PNPI, Gatchina, RUSSIA	Leonid	Kochenda
RUSSIA	PNPI, Gatchina, RUSSIA	Dmitrii	Kotov
RUSSIA	PNPI, Gatchina, RUSSIA	Petr	Kravchov
RUSSIA	PNPI, Gatchina, RUSSIA	Evgeny	Kryshen
RUSSIA	PNPI, Gatchina, RUSSIA	Anna	Kyrianova
RUSSIA	PNPI, Gatchina, RUSSIA	Mikhail	Malayev
RUSSIA	PNPI, Gatchina, RUSSIA	Victor	Maleev
RUSSIA	PNPI, Gatchina, RUSSIA	Yuri	Naryshkin
RUSSIA	PNPI, Gatchina, RUSSIA	Denis	Pudzha
RUSSIA	PNPI, Gatchina, RUSSIA	Υωτίγ	Riabov
RUSSIA	PNPI, Gatchina, RUSSIA	Vladimir	Samsonov
RUSSIA	PNPI, Gatchina, RUSSIA	Victor	Solovyev
RUSSIA	PNPI, Gatchina, RUSSIA	Alexander	Vasilyev
RUSSIA	PNPI, Gatchina, RUSSIA	Marat	Vznuzdaev
RUSSIA	PNPI, Gatchina, RUSSIA	Mikhail	Zhalov
RUSSIA	PNPI, Gatchina, RUSSIA / MEPhI	Victor	Riabov

• Вклады:

- ✓ Газовая система **ТРС** и **ТОГ**(?)
- ✓ Участие в разработке&производстве трековых (straw) форвардных камер – Стадия-II (?)
- ✓ Участие в производстве ECAL (?)
- ✓ Административное участие
- ✓ Моделирование (резонансы, конверсия, ECAL, ультрапериферия и т.д.)

Заключение

- Проект NICA/MPD будет реализован со сроками исполнения близкими к плановым показателям
- Участие в NICA/MPD является естественным продолжением деятельности ПИЯФ/ОФВЭ, участия в экспериментах RHIC/PHENIX и LHC/ALICE, сотрудничества с FAIR/CBM
- ОФВЭ/ПИЯФ обладает достаточными компетенциями для того, чтобы внести существенный вклад в коллаборацию
- Организационные вопросы находятся на стадии обсуждения

MPD

- Основные детекторы Стадии-I спроектированы, начато массовое производство подсистем
- В 2018 году была сформирована международная коллаборация МРД
- План работ:

✓ 2023

- ✓ 2018 2019 строительство и запуск Booster
- ✓ 2019 подготовка экспериментального зала MPD
- ✓ 2019 окончание строительства и испытания магнита MPD
- ✓ 2020 окончание строительных работ на площадке
- ✓ 2020 сборка и запуск МРD (Стадия-I)
- 2021 запуск Коллайдера
- 2021 запуск в эксплуатацию Компьютерного центра
 - запуск **МРD** (Стадия-II)