

ПИЯФ и модернизация ALICE

В. Никулин

Мюонный спектрометр +

Мюонный спектрометр ALICE

Работа при 50 кГц РЬ-РЬ

Замена электроники трековой системы

Меняют Front-end (MANU->DS) и Readout (CROCUS -> SOLAR) Совместимость по разъемам данных Управляющие сигналы и потоки данных идут по внешним гибким кабелям

мюонного спектрометра ALICE в 2018 г.

920 silicon pixel sensors (0.4 m²) on 280 ladders of 2 to 5 sensors each

Изготовление 'ступеней'

Chip alignment/gluing with ALICIA7 machine

Wire Bonding

Установка на гибкую плату чипов с точностью 5 мкм, наклейка, разварка,

тестирование

В. Никулин

О модернизации мюонного спектрометра ALICE в 2018 г.

Холодильная установка МФТ (

Накопительный резервуар и циркулярные насосы

Контрольные манометры

Водяное охлаждение в субатмосферном (защищенном от утечек) режиме. Завершена сборка основного модуля холодильной установки (все, кроме трубопроводов в зале)

В. Никулин

Холодильная установка МФТ

Клапаны дистанционного управления потока воды в охлаждающих цепях Внизу теплообменник

Шкаф электро-пневматического оборудования

Зачтенный вклад ПИЯФ в MFT construction CORE : **110 кШФ** Полный ожидаемый вклад: **125 кШФ**

Дополнительно суммарный ожидаемый вклад In-kind в MFT construction CORE ~ 60 кШФ

ожидаемый полный вклад в MFT CORE (R&D+construction) > **200 кШФ**

Ввод в строй и обслуживание зачитывается как service task

	\leftarrow	2	2018	DCDC	del Disk Disk 1 Infrast	Disk 0 (Ready for	ins Copy_Disk 4 (R H	alf-MFT #2 (Rea	.dy for commis	sionning) <mark>L</mark> Ha	เlf-MFT #1 (Ins	stalled) led) sionnin	g) MFT (Re	ac
project -			sept. oct. n	ov. déc.	janv. févr. mars avr	. mai juin juil	. août sept.oct.	nov. déc. ja	anv. févr. m	ars avr. ma	i juin juil.	août sept.oct.	nov. déc.	Ţ
om	Date de debut	Date de fin												
• FPCs	16/07/18	27/02/19	27/09/18	\$										Ц
Heat Exchangers	01/10/18	18/02/19												Ц
Disk Supports	01/10/18	04/02/19												
Disk PCBs	01/10/18	13/02/19												
Infrastructure & tools	03/09/18	15/03/19												
Barrel	01/10/18	07/05/19												
Cone Skeleton	07/01/19	01/03/19												
Services	03/12/18	15/02/19		-										Π
Mother Boards	03/12/18	15/03/19	-	-										Π
PSUs	29/11/18	15/03/19												Π
Half-MFT #1	10/10/18	03/02/20												Π
• Half-MFT #1 (Ready for cavern	. 04/02/20	04/02/20	•						٠					
Half-MFT #2	29/01/19	14/04/20												Π
• Half-MFT #2 (Ready for cavern	. 15/04/20	15/04/20								٠				Π
In Cavern Installation	15/04/20	26/05/20									٩			
 MFT (Ready for commissionning) 	27/05/20	27/05/20									1			
MFT Commissionning	27/05/20	12/11/20											<u>1</u>	Π
MFT (Ready for data taking)	13/11/20	13/11/20												
End of LS2	22/02/21	22/02/21												

https://twiki.cern.ch/twiki/bin/view/ALICE/MFTTechnicalBoard

Тяжелые ионы следующего поколения A next-generation LHC heavy-ion experiment

https://indico.cern.ch/event/779787/overview

SPD (Shower Pixel Detector)

Реtersburg Nuclear Physics Institute (PNPI), Gatchina NRC "Kurchatov Institute" концепция опубликована 18 декабря 2018 Технология КМОП

сможет работать при светимости в 20-50 раз больше, чем в 2021 г

Трекинг: Разрешение до 5 мкм Толщина до 0.05% Х₀ (!!!) Чип: до 21×21 см² (МФТ: 1.5×3 см²)

толщина 20-300 мкм

 $B\simeq 0.5-1\ T$

Время пролета: разрешение 20 пс

<u>Сроки:</u> <u>монтаж во время LS4</u> <u>Бюджет: ???</u> 10

После модернизации детекторы установки ALICE смогут работать при увеличенной в 10 раз светимости БАК в рамках новой системы сбора и накопления информации (в режиме непрерывного считывания

ПИЯФ участвует в:

- модернизации трековой системы Мюонного спектрометра
- Мюонный Форвардный трекер
 - Участие в проектировании и вводе в строй системы охлаждения
 - Участие в разработке и изготовлении 'ступеней'

ПИЯФ выразил интерес в участии в разработке принципиально нового детектора для изучения тяжелых ионов

Спасибо! С Новым Годом!

Backup

Super-ALICE

Для примера: модернизированный ITS2 имеет площадь 10 м², 12 10⁹ пикселей

Новая установка по сути дела гипер-ITS:

Детектор основан на развитии MAPS (Monolithic Active Pixel Sensors) на базе КМОП технологий

MAPS это интегрированные сенсоры и front-end с системой первичного считывания, имеют малые шумы,

высокое разрешение и скорость считывания, при малом количестве вещества

Цель: сверхтонкий (до 0.05% Х₀ на слой) детектор из (гнутых) кремниевых пиксельнх чипов,

Геометрия: вложенные цилиндры + end cup'ы; перекрытие $|\eta| < 4$.

Внутренние слои могут быть внутри пучковой трубы ->

Низкие поперечные импульсы (десятки МэВ/с) + Высокое разрешение вершины

PID: B + TOF. TOF работает до 500 МэВ/с, далее по ливневым детекторам, вроде dE/dx пока не планируется Размеры: радиус 1.2 м, длина 3.6 м

Поле 0.5 Т (ALICE L3) обеспечит $\delta p/p^2$ % при захвате ~20 Мэв/с < p_{τ} < 30 ГэВ/с

TOF: δt/t ~ 20 пс, 3 слоя MAPS на лавинных диодах, пиксель 40 мкм, разработка для CMS/ATLAS, фаза 2 **SPD**: несколько слоев свинца, переложенных MAPS, регистрирующих индивидуальные частицы ливня от электронов/фотонов. Так как λ_n/X₀~30, вклад от адронного ливня будет невелик **Barrel (|η| < 1.4)**:

IT - 3 слоя 0.05% X $_0$ внутри пучковой трубы (2 мм от трубы), $\delta x^{\sim} 3$ мкм

ОТ - 7 слоев толщиной 0.5% $\rm X_0$, $\rm \delta x^{\sim}5$ мкм, плюс TOF и SPD

end cup (1.4 < |η| < 4): по 4 слоя в IT, 6 слоев в ОТ и 1 плюс SPD

SAMPA

- впервые реализована связка на каждый канал: аналоговая электроника + АЦП 10 бит 10МГц.
- Вносимый шум квантования достаточно мал 0.3 канала rms
- скорость 4.8 Гбит/с на линию или 1 Тбит/с на систему
- Все работает в непрерывном режиме а не триггерном

3. ALPIDE

- Шум всего 5 электронов (при пороге ~100) это реализовано за счет того, что емкости не пФ а фмФ ->
 - Крайе мало шумовых срабатываний
- Интеграция пиксель + front-end электроника в одном чипе
- схема не зарядочувствительный предусилитель, а простой усилитель напряжения.
- Режим питания, когда нет сигнала, близкок к спящему.