IRIS & ISOLDE: laser ion source

ЭКСПЕРИМЕНТЫ С ЛАЗЕРНЫМ ИОННЫМ ИСТОЧНИКОМ

А. Е. Барзах, П. Л. Молканов, М. Д. Селиверстов, Д. В. Федоров,

Windmill-ISOLTRAP-RILIS collaboration

- PNPI, Gatchina, Russian Federation
- **RILIS and ISOLDE, Geneva, Switzerland**
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Mainz, Germany
- **University of Manchester, UK**
- MR-TOF@ISOLTRAP team
- University of the West of Scotland, United Kingdom
- Instituut voor Kern- en Stralingsfysica, K.U. Leuven, Leuven, Belgium
- Comenius University, Bratislava, Slovakia
- University of York, United Kingdom

...

IS 456, 466, 511, 534, 598, 608

ISOLDE: in-source spectroscopy

B. A. Marsh et al., 20013 EMIS conference, NIM B317, p.550 (2013) WM: A.N. Andreyev et al, Phys. Rev. Lett 105, 252502 (2010) MR-ToF MS: R. N. Wolf et al, NIM, A686, 82 (2012)

ISOLDE: in-source spectroscopy

B. A. Marsh et al., 20013 EMIS conference, NIM B317, p.550 (2013) WM: A.N. Andreyev et al, Phys. Rev. Lett 105, 252502 (2010) MR-ToF MS: R. N. Wolf et al, NIM, A686, 82 (2012)

Hg: Shape staggering

"The huge shape staggering in light Hg isotopes is one of the most remarkable discoveries in nuclear structure physics in the last 50 years".

K. Heyde and J. L. Wood, Phys. Scr. 91 (2016) 083008

G. Ulm, S.K. Bhattacherjee, P. Dabkiewicz, et al., Z. Phys. A 325, 247-259 (1986)

Hg: End of the shape staggering

New theoretical explanation of the shape evolution was proposed to describe our data

ISOLDE: End of the shape staggering

LETTERS https://doi.org/10.1038/s41567-018-0292-8

Characterization of the shape-staggering effect in mercury nuclei

B.A.Marsh^{1*}, T.Day Goodacre^{1,2,18}, S. Sels^{3,18}, Y.Tsunoda⁴, B.Andel⁵, A.N.Andreyev^{6,7}, N.A.Althubiti², D.Atanasov⁸, A.E.Barzakh⁹, J.Billowes², K.Blaum⁸, T.E.Cocolios^{2,3}, J.G.Cubiss⁶, J.Dobaczewski⁶, G.J.Farooq-Smith^{2,3}, D.V.Fedorov⁹, V.N.Fedosseev¹, K.T.Flanagan², L.P.Gaffney^{3,10}, L.Ghys³, M.Huyse³, S.Kreim⁸, D.Lunney¹¹, K.M.Lynch¹, V.Manea⁸, Y.Martinez Palenzuela³, P.L.Molkanov⁹, T.Otsuka^{3,4,12,13,14}, A.Pastore⁶, M.Rosenbusch^{13,15}, R.E.Rossel¹, S.Rothe^{1,2}, L.Schweikhard¹⁵, M.D.Seliverstov⁹, P.Spagnoletti¹⁰, C. Van Beveren³, P. Van Duppen³, M. Veinhard¹, E. Verstraelen³, A. Welker¹⁶, K. Wendt¹⁷, F. Wienholtz¹⁵, R.N. Wolf⁸, A.Zadvornaya³ and K.Zuber¹⁶

In rare cases, the removal of a single proton (Z) or neutron (N) from an atomic nucleus leads to a dramatic shape change.

the minimum-energy configuration of the nucleus to deformation. Consequently, the ground states of most isotopes in the nuclear

Shape staggering: Theory, HF

Nuclear Density Functional Theory (DFT)

Wrong *I* and μ !

Shape staggering: Theory, MCSM

Q, μ and $\delta < r^2 >$ values are reproduced by the theory

α - and β -decay studies with the laser ion source

Large hindrance of α decay ¹⁸⁰Tl^g \rightarrow ¹⁷⁶Au^g

B. Andel et al., Phys. Rev. C 96, 054327 (2017)

Large hindrance of α decay ¹⁸⁰Tl^g \rightarrow ¹⁷⁶Au^g

¹⁷⁸ TI		¹⁸⁰ TI		¹⁸² TI		
$m{E}_{lpha}$ (keV)	δ²(keV)	${m E}_{lpha}$ (keV)	δ ² (keV)	$m{E}_{lpha}$ (keV)	δ ² (keV)	
6862(10)	0.30(15)	6553(7)	0.16(11)	6406	0.043(25)	
6693(10)	13.0(17)	6354(7)	2.9(19)	6360(6)	0.048(28)	
6595(10)	10.2(24)	6348(7)	0.27(18)	6165(6)	1.13(66)	

Strongly hindered gs \rightarrow gs decay ($\delta^2 \sim 0.1$ keV; HF ~ 500) at the same spin and deformation! Large hindrance is due to the change of both proton, $s_{1/2} \rightarrow d_{3/2}$, and neutron, $h_{9/2} \rightarrow f_{7/2}$, configurations (confirmed by our µ measurements).

¹⁷⁶Au

¹⁸⁰TI

Configuration	1	$\mu_{add}(\mu_N)$	$\mu_{exp}(\mu_N)$	Configuration	/	$\mu_{add}(\mu_N)$	$\mu_{exp}(\mu_N)$
$\pi d_{3/2} \otimes v f_{7/2}$	4	-0.84	-0.834(9)	<i>πs</i> _{1/2} ⊗ <i>vh</i> _{9/2}	4	-0.58	-0.564(23)
$\pi d_{3/2}^{}\otimes h_{9/2}^{}$	4	0.66	-0.834(9)	$\pi s_{1/2} \otimes v f_{7/2}$	4	0.70	-0.564(23)

Why does neutron in ¹⁷⁶Au occupy f_{7/2} instead of expected h_{9/2} orbital?

Nuclear shells below *N* = 100

S. Sels *et al.*, In-source laser resonance-ionization spectroscopy of neutron-decient ¹⁷⁷⁻¹⁸⁵Hg isotopes (accepted by Phys. Rev. C)

Shell swap

Hindrance factors and µ for 1/2⁺ nuclei

J. Cubiss et al., Phys. Lett. B 786 (2018) 355

Nonaxiality in ^{177, 179}Au

Thus, the structures of 1/2⁺ states in parent ¹⁸¹TI and daughter ¹⁷⁷Au are different: spherical $s_{1/2}$ state in ¹⁸¹TI and nonaxially deformed mixture of $s_{1/2}$ and $d_{3/2}$ states in ¹⁷⁷Au \rightarrow hindrance of the α decay

Isomer-selective Indium photoionization

New efficient ionization scheme for Ra

T. Day Goodacre *et al.,* Spectrochim. Acta, **B150**, 99 (2018); K. M. Lynch *et al.,* Phys. Rev. C **97**, 024309 (2018).

Laser ion source: summary (2018)

- 1. Измерены изотопические сдвиги и сверхтонкое расщепление (μ , Q, $\delta < r^2 >$) для 15 изотопов (изомеров) ₈₀Hg на переходе 253.7 nm. Продемонстрировано исчезновение эффекта shape staggering при A<181.
- Изомерно-селективная фотоионизация в лазерном ионном источнике позволяет получить большой объем ядерноспектроскопической информации (T_{1/2}, E_α, b_α, b_β, α-γ, γ -γ coincidence, conversion coefficients, partial decay schemes и т. д.) без дополнительных затрат времени. Из полученных результатов отметим:
 - Большой фактор задержки α распада ¹⁸⁰Tl→¹⁷⁶Au, а также анализ спинов и моментов соседних изотопов Hg указывает на изменение оболочечной структуры (shell swap).
 - Сопоставление фактора задержки α распада ¹⁸¹Tl→¹⁷⁷Au со спинами и магнитными моментами этих ядер позволяет сделать вывод о неаксиальной деформации ^{177, 179}Au.