Отдел Радиоэлектроники 2017-2018 Отчёт и Планы

В.Л. Головцов Научная Сессия Отделения Физики Высоких Энергий НИЦ «Курчатовский институт» - ПИЯФ 28.12.2017

Nº	Название системы	Проект	Функции	Итог 2017/ <mark>План 2018</mark>
1	Система высоковольтного питания мюонной станции ME1/1 CMS	Модернизация мюонной системы СМS	Распределение высоковольтного питания на катодные стриповые камеры	Испытания 36- канального прототипа/ Изготовление и испытания лабораторных образцов
2	Система источников высоковольтного питания мюонных станций ME2-ME4 CMS	Модернизация мюонной системы СМS	Выработка высоковольтного питания для катодных стриповых камер	Испытания 9-канального прототипа/ Изготовление и испытания лабораторных образцов
3	Высоковольтная система для мюонных камер M2R2, M3R2 LHCb	Модернизация мюонной системы LHCb	Распределение высоковольтного питания на пропорциональные камеры	Разработка технической документации/ Изготовление опытного образца
4	HVDS for NeuLAND (High Voltage Distribution System)	Установка R3B – NeuLAND нейтронный спектрометр	Распределение высоковольтного питания на фотоумножители	Выпуск серии и поставка в GSI серии 2000 каналов/ Серия 3000 каналов
5	Система регистрации и считывания данных	Эксперимент ПРОТОН	Регистрация и считывание данных время-пролетного и трекового детекторов	Разработка прототипа/ Изготовление и испытание прототипа
6	Система считывания данных	Эксперимент SHiP, CERN	Считывание данных Straw-спектрометра	Разработка проекта/ Разработка (изготовление?) прототипа

Отдел радиоэлектроники 2017. Основные работы Модернизация мюонной системы СМS . Фаза 2

Тестовые пучковые испытание 9-канального прототипа системы высоковольтных источников С повышенной нагрузочной способностью по выходному току **R**ΛΔ катодных стриповых камер станций МЕ2-4 торцевой мюонной системы CMS Тестовые испытания подтвердили рабочие характеристики прототипа

Тестовые пучковые испытания в ЦЕРН 36канального прототипа системы распределения высоковольтного питания для катодных стриповых камер станции ME1/1 торцевой мюонной системы CMS Тестовые испытания подтвердили рабочие характеристики прототипа

Gamma Irradiation Facility GIF++ at CERN Beam up to 100 Gev/c,14 TBq Cesium source atenuation factorfrom zero to 50.000

28-Тестовые пучковые испытания В ШЕРН канального прототипа системы распределения высоковольтного питания для камер с газовым (GEM) **GE1/1** электронным умножением торцевой мюонной системы CMS. Тестовые рабочие испытания подтвердили характеристики прототипа

Отдел радиоэлектроники 2017. Основные работы Развитие системы высоковольтного питания UF/PNPI HV

Головной источник питания до 4 кВ /60 мА -CMS (3 кВ - LHCb)

MB- 8-канальный Мастер-дистрибьютор Регуляторы 0-4 кВ (0-3 кВ - LHCb) 1.5 мА выходной ток на канал Измерение тока и напряжения

DB36 (30)Дистрибьютор на 30 или 36 каналов Понижающее регулирование ~1KV Выходной ток 100 мкА на канал Измерение тока и напряжения

Трехуровневая система распределения высоковольтного питания

Девять одноканальных монтируемых на плату источников питания

HVSPS - 9 канальный источник питания Регулирование 0–4 кВ 2. 5 мА выходной ток на канал Измерение тока и напряжения DB36 (30)Дистрибьютор на 30 или 36 каналов Понижающее регулирование ~1KV Выходной ток 100 мкА на канал Измерение тока и напряжения

Двухуровневая система распределения высоковольтного питания

Фаза 2. Разработка, конструирование, тестирование, ввод в эксплуатацию:

- 576-канальной системы распределения высоковольтного питания мюонной станции ME1/1 (DB36, HVSPS)
- 396- канальной системы высоковольтных источников для мюонных станций ME2-4 (44 HVSPS)

Развитие системы высоковольтного питания UF/PNPI HV

Набор из семи сенсоров-регуляторов для обеспечения номиналов одной камеры GEM -3760, -2860, -2410, -2060, -1620, -920, -300 В. Точность установки – 1В Максимальный ток в канале 100 мкА

Высоковольтный модуль HVSPS Vmax/Imax - 4 κB/2.5 MA Точность регулирования ±1В Точность измерения ± 1 В/ 10 мкА

RDB-GEM – Дистрибьютор, обеспечивающий распределения высоковольтного питания на 4 камеры GEM

Активный высоковольтный делитель

28-канальный прототип системы высоковольтного питания камер GEM станции GE1/1

Начиная с 2017 года планировалось продолжение работ по созданию 1000-канальной системы высоковольтного питания камер GEM станции GE1/1. Однако было принято решение в пользу CAEN, Вопрос о высоковольтной системе для камер GEM станции GE2/1 остается открытым.

События 2017: 23 октября – Распоряжение Правительства №2321 р о выделении в 2017 году из резервного фонда 330 млн руб для предоставления субсидий на проведение модернизации детекторов БАК. В том числе ИЯИ РАН – 67 млн руб, ФГБУ НИЦ «Курчатовский институт» – 263 млн руб. 22 ноября – Извещение ИЯИ РАН об Открытом конкурсе на разработку и поставку компонентов 12 декабря – подача заявки ПИЯФ. 18 декабря – подведение итогов Конкурса с одной заявкой. 25 декабря – подписание Договора с ИЯИ РАН 667/17-227-300-2,2017. Срок окончания работ – 30.06 2018

Таблица финансирования работ. Этап 2. Мероприятие 1.4 CMS

Тема	Финансирование по годам, млн руб					
	2017	2018	2019	Всего		
Создание системы распределения высоковольтного питания станции ME1/1	4	6	4	14 (CORE 110 kCHF)		
Создание системы источников высоковольтного питания станций ME2-4	9	10	8	27 (CORE 185 kCHf)		

┿╏╏╧╺╸╏╏═╘╬

Отдел радиоэлектроники 2017. Основные работы

Система распределения высоковольтного питания детектора NeuLAND экспериментальной установки R3B коллаборации NUSTAR

Работа проводится в соответствии с Соглашением о сотрудничестве между FAIR GmbH и ФГБУ «ПИЯФ» (в настоящее время НИЦ «Курчатовский институт» - ПИЯФ)

Один из двух идентичных модулей детектора NeuLAND – 3000 фотоумножителей

DB50 - 50-канальный модуль распределения высоковольтного питания для фотоумножителей (PMTs) нейтронного времяпролетрного спектрометра NeuLAND с индивидуальным регулированием напряжения и мониторированием напряжения и тока для каждого канала. Размер: 6U x 9HP x 520 мм (ВхШхД)

НVCB- модуль управления системой. 100BASE-T ETHERNET Размер 33 x 482 x 225 мм (ВхШхД)

Таблица поставок оборудования системы HVDS3200

	Поставка	Coc	Δατα	
		DB50	HVCB	
1	Пресерия 200 каналов	4	1	12/2014
2	Серия 1000 каналов	20	1	03/2016
3	Серия 2000 каналов	40		11/2017

...

Ethernet HV Control Board Control & Monitoring Bus DB50 #00 DB50 #01 ... DB50 #14 DB50 #15

Структура системы

Характеристики PMT Hamamatsu R8619:

- Напряжение анод-катод (max) 1500 В
- Средний ток анода(max) 0.1 мА
- Максимальный ток делителя при 1500 В 0.4 мА

Схема управления системой

- В каждом канале HVDS3200:
- Регулировка напряжения 0...1500 В; 0.1%
- Максимальный ток 0,5 mA
- Мониторирование тока / напряжения 0,1%
- Стабильность (за 24 часа) 0,1%

Поставка 2018

Поставка	Состав		Дата
	DB50	HVCB	
Серия 3000 каналов	60	1	11/2018

Программное обеспечение:

- Штатное EPICS IOC для FAIR/ GSI
- ПО для калибровки под Windows
- Платформонезависимое (Phyton) для калибровки и мониторирования

Number of Stations/ Layers	Number of Channels	Number of Partitions	Time Window, ns	Data Size Bytes/ hit	Hits/ particle	Communication Links	Resolution ns	Data per Spill Mbyte	Tracks/ Event	Event overlap fraction
4/16	18000	4	600	3	40	4	3	120.0	2	12.5 %

Configuration of the SST Front-End Electronics for One Partition

FC_L collects data from up to 16 AD cards and re-routes collected data to a FEC_T via high speed Serial Links. Command and control flow goes in the opposite direction: from the FEC_T to the FEC_L and further to 16 AD cards

FC_T collects data from up to 16 FEC_L cards and re-routes collected data to a FEH via Fiber Interface. Timing and fast control flow from TFC Interface while commands for slow control and monitor flow goes from Ethernet Interface.

Current questions:

- 1. serial link rate?
- 2. FPGA type?
- 3. Fiber, Ethernet and TFC interface implementation?
- 4. mechanical standard?

Front-End/Concentrator Options

Разработка проекта системы считывания данных Straw-трекера эксперимента SHiP

Current Option

AD16 Card – 16 –channel Amplifier/ Discriminator Analog part based on the ASDQ ASIC Amplifier gain 7 mV/fC, Shaping time 6 ns Threshold control 5fC ÷ 150 fC Digital part based on Xilinx Spartan3 XC3S200 FPGA Data digitization equivalent to a 400 MHz sampling rate Programmable [0 to 255] data delay in 10 ns step 100 Mb/s serial interface RJ45 Jack for CAT5 STP cable JTAG Interface chain

Possible Upgrade

Number of AD16 cards – 280 per one partition, 1135 in total

Отдел радиоэлектроники 2017. Основные работы Разработка проекта системы считывания данных Straw-трекера эксперимента SHiP

TE0720 Processor (Trenz Electronics GmbH)

TE0720/ TE0701 connected to the Custom Connector

This option is under firmware modification to be ready for ASDQ Test in 2018

Система регистрации и считывания данных эксперимента ПРОТОН

Спасибо за внимание.

С наступающим Новым Годом!