Отдел Радиоэлектроники 2016-2017 Отчёт и Планы

В.Л. Головцов Научная Сессия Отделения Физики Высоких Энергий ФГБУ «ПИЯФ» 29.12.2016

Отдел радиоэлектроники 2016-2017. Основные работы

N∘	Название системы	Проект	Функции	Итоги 2016 / План 2017
1	Процессор Поиска Треков (ППТ) Мюонной Системы Супердетектора КМС	Модернизация L1 Мюонного Триггера при номинальной светимости БАК 1 ·10 ³⁴ см ⁻² с ⁻¹	Отбор мюонных треков по их качеству в заданной области Мюонной Системы КМС	Оборудование и эксплуатация стенда MicroTCA. Изготовление и исследовательские испытания экспериментального образца ППТ *** Отладка ППТ с трековыми данными мюонной системы КМС, Применение стенда для систем сбора амплитудно-временной информации детекторов
2	Система Высоковольтного Питания (ВВП) для Мюонных Камер с Газовым Электронным Умножением (ГЭУ)	Модернизация L2 Мюонной Системы при высокой интенсивности БАК 5·10 ³⁴ см ⁻² с ⁻¹	Распределение высоковольтного питания на электроды мюонных камер с ГЭУ	Экспериментальный образец системы ВВП *** ПНИЭР по созданию систем ВВП для станций ME1/1, GE1/1 ТМС
3	Система Распределения Высоковольтного Питания HVDS 3200	Установка R3B – NeuLAND широкоапертурный нейтронный спектрометр	Распределение высоковольтного питания на фотоумножители	Эксплуатация 1200-канальной серии системы, комплектация и изготовление 2000-канальной серии системы Изготовление 2000-канальной серии
4	CROS3-N (CROS3 Система Считывания Модель N)	Эксперименты Нейтрино-4, Polfusion, Тестовый стенд БАК-би	Оцифровка аналоговых сигналов детекторов. Сбор данных в самозапуске или по внешнему сигналу	Внедрение системы и сбор данных в экспериментах Сбор данных в экспериментах, развитие систем семейства CROS3

*** - Результаты работы получены при финансовой поддержке Министерства образования и науки РФ в рамках выполнения проекта, реализуемого по Соглашению от 17 октября 2014 г. № 14.610.21.0004, идентификатор ПНИЭР RFMEFI61014X0004.

Особенности модернизации L1 мюонного триггера

Причины модернизации:

 Увеличение светимости БАК вплоть до ~ 2·10³⁴ см⁻²с⁻¹, при этом количество наложений данных (pile-up) возрастает до 50 и более.

• Ожидаемое увеличение интенсивности на входе L1- триггера ~ 6 раз

Главная цель модернизации:

Сокращение интенсивности L1-триггера без существенной потери эффективности

Следствия:

- 1. Стандартизация и гибкость технологического обеспечения
- Новый стандарт электроники с микроархитектурой для телекоммуникационных
- вычислений MicroTCA (Micro Telecommunication Computing Architecture).
- Применение развитых FPGA (ПЛИС), мощность которых позволяет реализовать сложные реконфигурируемые алгоритмы уже на уровне реконструкции мюонных треков использовать высокоскоростные последовательные каналы ввода-вывода (вплоть до 13 Гб/с)
- Применение современных высокоскоростных оптических каналов связи.
- 2. Развитие алгоритмов триггерной обработки данных
- Параллельные структуры обработки данных трех мюонных детекторов на уровне процессоров поиска треков.
- Выделение зоны перекрытия торцевой и центральной мюонных систем КМС для параллельной обработки данных.

Стратегия модернизации L1 Мюонного Триггера

Реализованный Мюонный триггер

Модернизированный Мюонный триггер

КСК - Катодные стриповые камеры, ДК - дрейфовые камеры, КРП - Камеры с резистивными пластинами

ТМС - Торцевая мюонная система, ЦМС - Центральная мюонная система,

ЛТ - Логика треков, ЛТМ - Логика трековых моделей

Философия реализованного триггера имела некоторую избыточность – три независимых мюонных системы, объединяемые на уровне глобального триггера.

В модернизированном триггере объединение производится уже на уровне процессоров поиска треков

(ППТ). Введен отдельный ППТ для зоны перекрытия центральной и торцевой мюонных систем (ПРК)

Структура экспериментального образца и эволюция элементной базы ППТ

Структура экспериментального образца ППТ

Сравнительные характеристики основных элементов реализованного ППТ и модернизированного ППТ

N⁰	Параметр	Реализованный ППТ	Модернизированный ППТ		
1	Число входных оптических каналов/ Скорость передачи	15 / 2 Гб/с	80/ 10 Гб/с		
2	Серия ПЛИС (FPGA), Основные параметры	Xilinx Virtex 5 Логических ячеек -12 тыс. DSP Процессоров - 128 Память - 7 Мб Трансиверов - 16/ 3.6 Гб/с Входов/выходов - 680	Xilinx Virtex 7 (ХС7VХ690Т) Логических ячеек -700 тыс. DSP Процессоров - 3.6 тыс Память - 52 Мб Трансиверов - 80/ 13 Гб/с Входов/выходов - 1 тыс		
3	Число адресных бит табличной памяти для ассигнования изгибающего момента Р _т	22	30		
4	Стандарт	9U VME	MicroTCA		

Создание экспериментального образца ППТ

Экспериментальный образец ППТ

Платы экспериментального образца ППТ:

- 1 Плата Программируемой Логики
- 2 Оптическая Плата
- 3 Объединительная плата

Плата Программируемой Логики : • Virtex-7 XC7VX690T FPGA (ПЛИС)

Оптическая Плата :

- •7 12-канальных оптических приемников Avago AFBR-820BEZ
- З 12-канальных оптических трансмиттера Avago AFBR-810BEZ

Всего обеспечивается 80 оптических входов и 28 оптических выходов

со скоростными характеристиками 10 Гб/с

Исследовательские испытания экспериментального образца ППТ

Стенд MicroTCA в отделе радиоэлектроники (в миру – ОРЭ)

: 1- Шасси МісгоТСА с объединительной платой, контроллером и источником питания.

2 – Рабочая станция. 3 – Цифровой осциллограф. 4 - Исследуемая плата

Исследовательские испытания экспериментального образца ППТ проводились в соответствии с разработанными Программой и Методиками испытаний. Пункты исследовательских испытаний и соответствующих им методик включают проверку платы программируемой логики, объединительной платы модуля, оптической платы. Кроме того осуществлялась проверка функциональности с использованием загружаемых трековых моделей. В итоге делается вывод о соответствии характеристик исследуемого экспериментального образца ППТ пунктам технического задания, программы и методик исследовательских испытаний. В дальнейшем при отладке ППТ потребуются реальные трековые модели, регистрируемые мюонной системой КМС.

Исследовательские испытания экспериментального образца ППТ (дуплексные каналы)

Фрагмент текстовой информации результатов сканирования первых 10 из 80 дуплексных каналов FPGA

Фрагмент текстовой информации результатов сканирования первых 10 из 80 оптических дуплексных каналов

	1	2	2	() () () () () () () () () ()		Seri	al I/O Links							l
Name	TX	RX	Status	Bits	Errors	a	Name	/1	ТΧ	RX	Status	Bits	Errors	
minimized Links (0)							E: & TX0-BX0 (12)							,
🗏 🍕 Alltrnpma (80)						à	Link 0		MGT X0Y31/TX	MGT X0Y33/RX	10.000 Gbps	8,683E12	0E0 1	į
% Link 0	MGT_X0Y0/TX	MGT_X0Y0/RX	10.000 Gbps	1.49E12	0E0	夐	S Link 1		MGT X0Y30/TX	MGT X0Y36/RX	10.000 Gbps	8.676E12	0E0 1	
	MGT_X0Y1/TX	MGT_X0Y1/RX	10.000 Gbps	1.484E12	0E0	Æ	-S Link 2		MGT X0Y29/TX	MGT X1Y34/RX	10.000 Gbps	8.677E12	0E0 1	
S Link 2	MGT_X0Y2/TX	MGT_X0Y2/RX	10.000 Gbps	1.484E12	0E0		% Link 3		MGT_X0Y28/TX	MGT_X1Y35/RX	10.000 Gbps	8.667E12	0E0 1	1
- % Link 3	MGT_X0Y3/TX	MGT_X0Y3/RX	10.000 Gbps	1.483E12	0E0	्क	% Link 4		MGT_X0Y33/TX	MGT_X0Y35/RX	10.000 Gbps	8.667E12	0E0 1	
S Link 4	MGT_X0Y4/TX	MGT_X0Y4/RX	10.000 Gbps	1.483E12	0E0	de	% Link 5		MGT_X0Y32/TX	MGT_X0Y37/RX	10.000 Gbps	8.667E12	0E0 1	
S Link 5	MGT_X0Y5/TX	MGT_X0Y5/RX	10.000 Gbps	1.494E12	0E0	init.	% Link 6		MGT_X0Y37/TX	MGT_X1Y36/RX	10.000 Gbps	8.668E12	0E0 1	
	MGT_X0Y6/TX	MGT_X0Y6/RX	10.000 Gbps	1.494E12	0E0		% Link 7		MGT_X0Y36/TX	MGT_X1Y38/RX	10.000 Gbps	8.669E12	0E0 1	
	MGT_X0Y7/TX	MGT_X0Y7/RX	10.000 Gbps	1.493E12	0E0	齳	% Link 8		MGT_X0Y35/TX	MGT_X0Y38/RX	9.828 Gbps	8.669E12	0E0 1	
- S Link 8	MGT_X0Y8/TX	MGT_X0Y8/RX	10.000 Gbps	1.481E12	0E0		% Link 9		MGT_X0Y34/TX	MGT_X0Y39/RX	10.000 Gbps	8.669E12	0E0 1	
Q Link Q	MOT YOYO TY	MCT YOYO DY	10.000 Chas	1 400510	050				MGT YOY38/TY	MGT X1V37/PX	10.000 Gbps	8 669E12	0E0_1	l

В таблицах последовательно указаны номера каналов (Link), передатчики (Tx) и приемники (Rx), скорость передачи (Status – 10 Gbps), количество переданных 32-разрядных слов (Bits), количество ошибок (Errors)

Итоги 2016:

• создание работоспособного экспериментального образца ППТ с последующей отладкой на реальных трековых данных мюонной системы КМС

• создание инфраструктуры на основе стандарта MicroTCA, как перспективы развития средств сбора данных с амплитудно-временным оцифровыванием информации координатных детекторов в современном стандарте.

В настоящее время область значений псевдобыстрот 2.4 > $|\eta|$ > 1.6 КМС не имеет резервирования детекторами с высоким временным и пространственным разрешением. Приемлемым решением проблемы является создание и применение детектора запуска регистрации мюонов в ТМС на основе мюонных камер с ГЭУ (GEM).

Это должно повысить эффективность работы модернизированной мюонной системы КМС при высокой светимости пучков БАК - 5×10³⁴ см²с⁻¹. Элементом задела данного направления работы является система высоковольтного питания для GEM (HV GEM). На данном этапе созданы и исследовались экспериментальные образцы HV GEM.

Разработка экспериментального образца системы HV_GEM

Разработан и испытан активный высоковольтный делитель, в котором питание электродов отдельных GEM подается через каскады (повторители) на полевых или биполярных транзисторах.

Результат - низкое начальное потребление тока (около 50 мкА) и независимость напряжений на электродах GEM от загрузки камер ионизирующими частицами.

Распределитель высоковольтного питания трехкаскадной камеры GEM содержит семь сенсоров-регуляторов для установки, регулирования напряжения и мониторирования значения выходного тока и напряжения

Исследовательские испытания экспериментальных образцов HV_GEM

Набор из семи Сенсоров/ Регуляторов для одной камеры GEM

Активный Высоковольтный Делитель

Высоковольтный модуль HV_SPS Число выходов - 9 Vmax/Imax - 4 кB/2.5 мА Точность регулирования ± 1 В Точность измерения ± 1 В/ 10 мкА Распределитель высоковольтного питания DB28M с набором из 28 сенсоров - регуляторов, обеспечивающих питание четырех камер по слоям: катод - 3760 В, верхний электрод 1-го GEM - 2860 В, нижний электрод 1-го GEM - 2410 В, верхний электрод 2-го GEM - 2040 В, нижний электрод 2-го GEM - 1620 В, верхний электрод 3-го GEM - -920 В, нижний электрод 3-го GEM - 500 В

- точность установки напряжений 1 В
- диапазон регулировки напряжений ± 250 В
- максимальный выходной ток 200 мкА
- точность мониторирования тока 0.01 мкА

Стенд для исследовательских испытаний, отладки и калибровки экспериментальных образцов системы высоковольтного питания GEM в ЦЕРН (Bld 904)

Экспериментальный образец системы HV_GEM : итоги 2016, планы 2017

Электрод камеры с ГЭУ	Напряжение (В)
1	- 3760,3
2	-2860,7
3	-2409,1
4	-2060,8
5	-1620,3
6	-920,4
7	-500,9

Установка выходных напряжений до номинальных значений (ramp up primary) семи слоев одной из камер GEM (сверху вниз - catode, G1, L1, G2, L2, G3, L3) в соответствии с техническим заданием для экспериментальных образцов системы ВВП.

Итоги 2016 : Создание и исследовательские испытания экспериментального образца. Устойчивая работа экспериментального образца с прототипом мюонных камер с ГЭУ на тестовом стенде с рентгеновским источником в ЦЕРН 2017 год – планируются испытания экспериментального образца системы совместно с GEM камерой в лабораторных и пучковых тестах в ЦЕРН.

Начиная с 2017 года планируется создание и исследовательские испытания экспериментальных образцов 1000-канальной системы ВВП мюонных камер с ГЭУ для станции GE1/1

Система распределения высоковольтного питания HVDS3200

Многоканальная система HVDS3200 обеспечивает распределение высоковольтного питания для 3200 фотоумножителей (PMTs) нейтронного времяпролетного спектрометра NeuLAND с индивидуальным понижающим регулированием напряжения и особенностями мониторирования значений напряжения и тока для каждого отдельного канала. Две такие системы должны обеспечить 6000 будущих PMTs детектора NeuLAND.
Работа производится в рамках Соглашения о сотрудничестве между FAIR GmbH и ФГБУ «ПИЯФ». Этап 2016- эксплуатация серии 1200 каналов HVDS, комплектация и изготовление серии 2000

каналов

Детектор NeuLAND показывает высокую эффективность регистрации за счет применения высоко гранулированных пластмассовых сцинтилляторов и отсутствия нечувствительного материала конвертера. Детектор состоит из 3000 модулей размером 5 x 5 x 250 см³, объединенных в 30 сдвоенных плоскостей по 100 модулей каждая, х 250 смактивный лицевой размер 250 см² и полную глубину 3 м. В эксперименте R3B установка NeuLAND будет состоять из двух детекторов по 3000 модулей, разнесенных на различное расстояние от мишени для выполнения специфических условий программы эксперимента.

Структура и характеристики системы HVDS3200

Структура системы

Схема управления системой

Система состоит из двух типов модулей:

- 1. DB50 (Distribution Board 50) 50-канальный распределитель высоковольтного питания.
- 2. HV Control Board (HVCB) модуль управления системой.

Система использует Головной источник высоковольтного питания (Primary HV PS), параметры которого по напряжению и току соответствуют данному числу каналов.

Характеристики PMT Hamamatsu R8619:

- Напряжение анод-катод (max) 1500 В
- Средний ток анода(max) 0.1 мА
- Максимальный ток делителя при 1500 В 0.4 мА

В каждом канале HVDS3200:

- Регулировка напряжения 0...1500 В; 0.1%
- Максимальный ток 0,5 mA
- Мониторирование тока 0,1%
- Мониторирование напряжения 0,1%
- Стабильность (за 24 часа) 0,1%

Модули системы HVDS3200

Модуль управления HVCB Размер 10 x 482 x 225 мм (В x Ш x Г)

В течение 2016 осуществлялось

- обслуживание пресерии 200 -каналов, поставленной в GSI в декабре 2014 года для работы с прототипом детектора NeuLAND

- обслуживание серии 1000 каналов, поставленной в GSI в феврале 2016 года для работы с детектором NeuLAND
- комплектация и начало работы по созданию серии 2000 каналов
- продолжение работы по программному обеспечению (ПО) системы
 - штатное EPICS IOC ПО для FAIR/GS
 - ПО для калибровки под Windows XP
 - платформонезависимое ПО (Python) для калибровки и мониторирования

В 2017 году

- производство и выпуск серии 2000 каналов
- продолжение работы по программному обеспечению системы

Развитие высоковольтных систем

Произведенные трехуровневые высоковольтные системы

Головной источник питания До 4 кВ /60 мА -CMS (3 кВ - LHCb)

 \rightarrow

Мастер-дистрибьютор 8 каналов 0-4 кВ регуляторы (0-3 кВ - LHCb) 1.5 мА выходной ток на канал Измерение тока и напряжения

Дистрибьютор на 30 или 36 каналов Понижающее регулирование ~1KV Выходной ток 100 мкА на канал Точность регулирования напряжения ±1В Точность измерения напряжения ±1В Точность измерения тока 100 нА

11000 каналов системы CMS (8500 каналов за 2004-2006 г), 4000 каналов LHCb

2017 год - планируется начало работ по модернизации высоковольтной системы для станции ME1/1 CMS (500 каналов) с двумя уровнями

Развитие семейства систем считывания CROS3

«В 2016 году запущен полномасштабный детектор Нейтрино 4. За 8 месяцев работы данного детектора и 3 года работы прототипа система показала себя как надежное, выполненное на высоком профессиональном уровне изделие, которое можно с успехом применять для решения сложных научных задач» (Сообщение пользователей по почте из Димитровграда) LHCb stand: Прототип новой камеры для LHCb исследован на пучке СЦ. Прототип трекера, состоящего из трех камер (6 плоскостей) детально исследовался на космике

Электроника проекта ПРОТОН

Структура системы регистрации и отбора данных детекторной установки проекта ПРОТОН (PreR&D)

Электроника проекта PAS R3B

Техническое задание

	PAS Electronics	Parameter
1	Number of channels	2000
2	Preamp/Shaper Peaking time	10 ns
3	Programmable threshold per card	Yes
4	Digitizing rate	1000 MHz
5	Gate, max	0.15 µs
6	Event size, max	50 B
7	Trigger rate, max	25 KHz
8	Trigger latency, max	100 µs
9	Data flow, max	750 KB/ s

Расценки (TDR)

	Item	Price, KEUR
1	Design&mechnics	40,0
2	Testing, calibration, alignment	20,0
3	Gas infrastructure	60,0
4	Straw tube	360,0
5	Frot-end electronics	80,0
6	TDC electronics	13.0
7	High voltage	13,0
8	Low voltage	13,0

Структура системы сбора данных детектора RAS (PreR&D)

