

to perform an experiment at MAMI

High Precision Measurement of the ep elastic cross section at small Q²

Contact person for the Experiment:

Alexey Vorobyev, Petersburg Nuclear Physics Institute

Mainz contact person: Achim Denig, Institute for Nuclear Physics, JGU Mainz

A.Vorobyev PAC meeting November 17 2016

Motivation Proton radius puzzle

$$Rp = 0.877(8) fm$$

Rp = 0.877(7) fm

Extraction of proton radius from e-p cross section

The measurements of d σ /dt should be at $Q^2 \leq 0.02 \text{ GeV}^2$

 $[d\sigma/dt]_{Rp}$ / $[d\sigma/dt]_{Rp=0}$

Difference in dσ/dt between Rp=0.84 fm and Rp=0.88 fm is only 1.3% at Q² =0.02Gev²

Mesurement of d σ /dt with point-to-point precision $\leq 0.2\%$

Radiative corrections

Absolute normalization of $d\sigma/dt$ with $\leq 0.2\%$ precision

Requirements to new generation measurements of proton radius in ep scattering experiments

- Low transfer momentum region, $0.001 \text{ GeV}^2 \le Q^2 \le 0.02 \text{GeV}^2$
- High resolution in Q²;
- Point-to-point precision $\leq 0.2\%$
- Absolute normalization of $\leq 0.2\%$

Experiment PRad (Proton Radius) Jefferson Lab

Goals of the proposed experiment

- Measurement of $d\sigma/dt$ in the Q² range 0.002 0.02 (0.04) Gev²;
- High resolution in Q² (~100 resolved points);
- 0.1% point -to-point precision in dσ/dt;
- 0.2 % absolute precision in $d\sigma/dt$.

This allows to measure the proton radius with \pm 0.005 fm precision and distingush the two options (0.877 fm and 0.841 fm) on a 7 σ confidence level

In comparison with PRad experiment:

Different systematical errors. Much lower Radiative corrections. These two experiments will be complementary to each other.

Recoiled proton @ Scattered Electron Detector

The proposed experiment is based on the recoiled proton detection method which was used in WA9 and NA8 experiments at CERN to measure small angle pp- and π p- scattering.

Recoiled proton detector ICAR at CERI

160

Nuclear Physics B217 (1983) 285-335

If compared with WA9/NA8 experiments

- Higher pressure
 from 10 bar to 20 bar
- Larger diameter from 400 mm to 600 mm
- Higher precision in dσ/dt measurements relative and absolute factor of 5.

Some advantages of the recoil method in measurements of the ep elastic scattering cross sections

- High resolution in low Q²-region;
- Direct measurement of Q^2 ($Q^2 = 2MT_R$) independently on the electron energy.
- No wall effects;
- Well determined gas target length;
- Close to 100% detection efficiency (under control):
- Precision absolute measurement of dσ/dt.
- Much smaller radiative corrections.

$$\frac{d\sigma}{dt} = \frac{\pi\alpha^2}{t^2} \left\{ G_E^2 \left[\frac{\left(\frac{4M + t}{\varepsilon_e} \right)^2}{4M^2 - t} + \frac{t}{\varepsilon_e^2} \right] - \frac{t}{4M^2} G_M^2 \left[\frac{\left(\frac{4M + t}{\varepsilon_e} \right)^2}{4M^2 - t} - \frac{t}{\varepsilon_e^2} \right] \right\}$$

$$-t = 2MT_R$$

 T_R determines d σ /dt with very little dependence on the electron energy losses before the coliision

 $\begin{array}{rll} d\sigma_t / \sigma_t &=& +0.005 \ d\mathsf{P} /\mathsf{P} & \mathsf{T}_\mathsf{R} = 1 \mbox{MeV}, \\ d\sigma_t / \sigma_t &=& +0.05 \ d\mathsf{P} /\mathsf{P} & \mathsf{T}_\mathsf{R} = 10 \mbox{MeV} \\ & \sigma_t = d\sigma / dt \end{array}$

14

Radiative corrections

Experts on RC A.Arbuzov and A. Gramolin (group of V.Fadin) agreed to calculate the radiative corrections for our experiment

MC calculated $\theta_e - T_R$ and $\theta_R - T_R$ plots calculated for the elastic ep scattering and for the background reaction $ep \rightarrow ep \pi^0$ for $\epsilon_e = 900$ MeV.

Main experimental problem

High precision calibration of the recoiled proton energy scale.

In our experiment this calibration will be done with 0.04 % precision via the T_R - θ_e correlation relying on high precision (0.02%) linear scale of the Forward Tracker.

Statistics and beam time

The systemetic errors entering the measured $d\sigma/dt$

		Syst. Error %	comments
1	Drift velocity, W1	0.01	
2	High Voltage, HV	0.01	
3	Temperature, K	0.015	
4	Pressure, P	0.01	
5	H_2 density , ρ_p	0.025	Sum of errors 3 and 4
6	Target length, L _{tag}	0.02	
7	Number of protons in target, N _p	0.045	Sum of errors 5 and 6
8	Number of beam electrons, N _e	0.05	Clean Tr0 free of pileups
9	Detection efficiency	0.05	
10	Electron beam energy, ϵ_{e}	0.02	
11	Electron scattering angle, θ_e	0.02	
12	t-scale calibration, T _R relative	0.04	Follows from error 11
13	t-scale calibration, T _R absolute	0.08	Follows from errors 11 and 10
	dơ/dt , relative	0.1	0.08% from error 12
	dσ/dt , absolute	0.2	0.16% from err.13 plus errors 7,8,9

Tentative design of the TPC& FT detector

MAMI and beam specifications

- MAMI Specifications
- Beam energy
- Energy spread
- Energy shift
- Absolute energy
- Electron Beam Specifications
- Beam intensity (main run) Beam intensity for calibration e/sec
- Beam divergency
- Beam size

500 MeV, 720 MeV < 20 keV (1σ) < 20 keV (1σ) ≤ ±150 keV (1 σ)

2x10^6 e/sec 10^4 e/sec and 10^3

> ≤ 0.5 mrad ≤ 100 µm

Drift velocity measurement

Precision in W measurements 0.01%

The TPC&FT detector on a movable platform.

Experimental layout for the physics run (Left panel) and for drift velocity measurements (Right panel).

The space for TPC platform 3m x 3m.

Five racks could be placed within 10 m from TPC. Some space is needed outside to keep H_2 containers

Working plan

2017 Test experiment in the electron beam at MAMI with a TPC prototype now available at GSI. Beam test equipment, TPC background

2018 Construction of the whole setup. First physics run.

Thank you for your attention

Electron energy E* in the collision point

T_R scale calibration via T_R - θ_e correlation

$$T_{R}^{*}(E_{0},\theta_{e})/T_{R} = 1 + 1.2 \cdot 10^{-3}$$

T_R scale calibration via T_R - θ_e correlation

$$T_R^*(E_0, \theta_e) / T_R = 1 + 1.2 \cdot 10^{-3}$$

$$T_R^*(E^*, \theta_e) / T_R = 1 + 3.8 \cdot 10^{-4}$$

T_R scale calibration via T_R - θ_e correlation

$$T_R^*(E_0, \theta_e) / T_R = 1 + 1.2 \cdot 10^{-3}$$

$$T_R^*(E^*, \theta_e) / T_R = 1 + 3.8 \cdot 10^{-4}$$

$$T_{R}^{*}(E^{*},\theta_{e}^{*})/T_{R} = 1 + 0.8 \cdot 10^{-4}$$

The TPC@FT detector can be also used to study e-d, He scattering µ-p,d,He scattering Exotic nuclei –p,d,He scattering

Experimental layout for high precision measurement of electron drift velocity.

DAQ system

Continious data flow . 100 MHz clock. $\rm T_R$ trigger

All data from 100 μ s interval before T_R trigger are sent to memory without introducing any dead time in data aquisition.

$\theta_{e}^{\ *}$ corrected for the radiation tail

Fig. 15. Schematic view of the ACTAR2 prototype (side view).

Fig.16. Layout of the ACTAR2 prototype anodes. An 241Am α -source is deposited on the cathode of the chamber opposite to the black spot on the anode number 7. The outer diameter of the anodes is 200 mm.

TPC@ FT detector

Experiment is designed for $\epsilon_e = 500 - 900 \text{ MeV}$ $\Theta_e \text{ max} = 25 \text{ deg.}$

TPC and FT are in common body at 20 bar pressure TPC: extra-pure H_2 , FT: Ar+CH₄

Study of elastic scattering of exotic nulei on proton

⁴He, ⁶He, ⁸He ⁶Li, ⁸Li, ⁹Li, ¹¹Li ⁷Be, ⁹Be, ¹⁰Be, ¹¹Be, ¹²Be, ¹⁴Be ⁸B ¹³C, ¹⁴C, ¹⁵C, ¹⁷C.

New measurement of 2S-4P in ep-atom Garching

If compared with WA9/NA8 experiments

- Higher pressure
 from 10 bar to 20 bar
- Larger diameter from 200 mm to 300 mm
- Higher precision in dσ/dt measurements relative and absolute factor of 5.

Some advantages of the recoil method in measurements of the ep elastic scattering cross sections

- High resolution in low Q²-region;
- Direct measurement of Q^2 ($Q^2 = 2MT_R$) independently on the electron energy.
- No wall effects;
- Well determined gas target length;
- Close to 100% detection efficiency (under control):
- Precision absolute measurement of dσ/dt.
- Much smaller radiative corrections.

$$\frac{d\sigma}{dt} = \frac{\pi\alpha^2}{t^2} \left\{ G_E^2 \left[\frac{\left(\frac{4M + t}{\varepsilon_e} \right)^2}{4M^2 - t} + \frac{t}{\varepsilon_e^2} \right] - \frac{t}{4M^2} G_M^2 \left[\frac{\left(\frac{4M + t}{\varepsilon_e} \right)^2}{4M^2 - t} - \frac{t}{\varepsilon_e^2} \right] \right\}$$

$$-t = 2MT_R$$

 T_R determines d σ /dt with very little dependence on the electron energy losses before the coliision

Main experimental problem

High precision calibration of the recoiled proton energy scale.

In our experiment this calibration will be done with 0.04 % precision via the T_R - θ_e correlation relying on high precision (0.02%) linear scale of the Forward Tracker.

Hydrogen Time Projection Chamber

		Resolution, o	
Recoil proton energy	T _R	60 KeV	1MeV ≤ T _R ≤ 10 MeV
Recoil proton angle	θ_{R}	15 mrad	Recoil range > 60 mm
Z of ep vertex	Z _v	200 µm	
Time arrival of TPC signals	t _{arr}	40 ns	

Forward Tracker

Linear scale with 0.02 % absolute precision

Beam Detectors

Si-pixels 3x3 mm: Input trajectory $\sigma_{\chi} = \sigma_{\gamma} = 30 \ \mu m$ Time resolution 10 ns Beam Killer: SC counter 1 ns resolution Pileup detector: SC counter 0.1 ns resolution

Beam intensity 2 x 10⁶ electrons/sec