IRIS & ISOLDE: laser ion source

Запаздывающее деление ¹⁸⁸Ві. Исследование эволюции и сосуществования форм у ядер висмута. (ИРИС, ПИЯФ — ISOLDE, CERN)

А. Е. Барзах, Ю. М. Волков, В. С. Иванов, П. Л. Молканов, Ф. В. Мороз, С. Ю. Орлов, В. Н. Пантелеев, М. Д. Селиверстов, Д. В. Федоров

ISOLDE

Comenius University, Bratislava, Slovakia GANIL, Caen, France Helmholtz Institut Jena, Germany ILL, Grenoble, France Institut für Physik, Johannes Gutenberg-Universität Mainz. Germany

IS 608:

Shape-coexistence and shape-evolution studies for Bi isotopes by in-source laser spectroscopy and beta-delayed fission in ¹⁸⁸Bi

MR-TOF@ISOLTRAP collaboration PNPI, Gatchina, Russian Federation RILIS and ISOLDE, CERN, Switzerland SCK-CEN, Mol, Belgium The University of Manchester, United Kingdom The University of York, United Kingdom University of Liverpool, United Kingdom University of the West of Scotland, United Kingdom

ISOLDE: in-source spectroscopy

Bi: hfs spectra

Transition from asymmetric to symmetric fission

Ν

Beta-delayed fission: theory

Transition from asymmetric to symmetric fission

¹⁸⁸Bi: Isomer selective beta delayed fission

ISOLDE: beta-delayed fission

¹⁸⁸Bi: Isomer selective beta delayed fission

Shape coexistence study in the Pb region

Comparison of 81 Tl and 80 Hg with 82 Pb

For comparison radii trend for different isotopic chains it is better to use relative $\delta < r^2 >$: $\delta < r^2 >_{N,126} / \delta < r^2 >_{124,122}$

remarkable coincidence of the relative-radii trends for Z = 80, 81, 82 at the extensive neutron range

Comparison of 84Po with 82Pb

noticeable departure for Po — onset of deformation

ISOLDE&IRIS, 83Bi isotopes: radii

preliminary results!

₈₃Bi & ₈₁Tl isotopes: intruder isomers

Bi: relative radii

Even-*N* nuclei: shape evolution in the Bi and TI isotopic chains markedly differs from each other, although these chains are "mirror" in respect to the filled proton shell (Z = 82) Radii trend for ₈₃Bi is intermediate between "spherical" ₈₂Pb trend and ₈₄Po trend with the onset of deformation

Hg and Bi radii

In Bi, shape staggering occurs at the same *N* as in Hg (N = 105), with the same amplitude and the same radii (deformation) difference between ground and $vi_{13/2}$ based isomeric states.

Bi: relative radii

Radius of the strongly deformed ¹⁸⁸Bi is found on the continuation of the Po-trend

Bi magnetic moments: qualitative considerations

Bi: Quadrupole moments

Gradual increase of (oblate) deformation. Q_s for ¹⁸⁹Bi corresponds to β = -0.13 (in the strong coupling scheme). Cf. β_{DM} from IS: $|\beta_{DM}| \sim 0.16$

Pb region: Quantum Phase Transition

change of spin-orbit splitting (shell gap) due to the tensor force

T. Otsuka, and Y. Tsunoda, The role of shell evolution in shape coexistence, J. Phys. G: Nucl. Part. Phys. 43 (2016) 024009

Bi: main results

- 1. $\delta < r^2 >$, μ , Q_s for 25 Bi isotopes/isomers
- 2. Marked deviation of Bi $\delta < r^2 >$ trend from (spherical) Pb & Tl trend at *N* < 109, onset of small oblate deformation (?)
- 3. Large isomer shift (shape coexistence) for intruder isomers
- 4. Large shape staggering at A = 188 (N = 105)
- 5. Systematic behaviour of $I^{m} = 9/2^{-} (\pi h_{9/2})$ and $I^{m} = 10^{-} (\pi h_{9/2}, v_{13/2})$ magnetic moments, deviation for A = 215, 217
- 6. First isomer selective β DF study (¹⁸⁸Bi). Spin dependence of β DF

Shape coexistence study in the Pb region

Comparison of 81 Tl and 80 Hg with 82 Pb

Large prolate deformation for ^{181, 183, 185}Hg. Return to "sphericity": to the same Pb-TI trend

Bi: relative radii

Odd-*N* nuclei: radii trend for $_{83}$ Bi is intermediate between "spherical" $_{82}$ Pb trend and $_{84}$ Po trend with the onset of deformation (although in a lesser extent than for even-*N* nuclei)