

научной сессии офвэ 22-25 декабря 2015

Upgrade EMU CMS

В. Сулимов

Muon Subsystem

CSC Upgrade LS1

•Original design unfinished – ME4/2 not built, because of finance restrictions, it was decided to postpone the construction of the ME4/2 region (72 CSCs) until the first LHC shutdown

- •72 ME4/2 chambers to complete system
 - Identical to chambers already built and working well
 - Increase redundancy of system
 - •Efficient triggering at high luminosities

Why ME4/2 upgrade?

With ME4/2, we can change the trigger Condition to be 3/4 Coincidence instead of 2/3 • Decrease in fake rate

(predicted)

Prediction of adding ME4/2 from simulation

Status Muon Subsystem

 $\begin{array}{c} ME1/1 \ 72 \ 1.5 \times 0.5 \ m^2 \\ ME1/2 \ 72 \ 1.6 \times 0.8 \ m^2 \\ ME1/3 \ 72 \ 1.7 \times 0.9 \ m^2 \\ ME2/1 \ 36 \ 1.9 \times 1.25 \ m^2 \\ ME3/1 \ 36 \ 1.7 \times 1.25 \ m^2 \\ ME4/1 \ 36 \ 1.5 \times 1.25 \ m^2 \\ ME2/2 \ 72 \ 3.2 \times 1.3 \ m^2 \\ ME3/2 \ 72 \ 3.2 \times 1.3 \ m^2 \\ ME4/2 \ 72 \ 3.2 \times 1.3 \ m^2 \\ 540 \ CSCs \ (cover \ about \ 6000 \ m^2 \) \\ 2.5 \ 10^{**}6 \ anode \ wires \\ 210816 \ anode \ readout \ channels \\ 273024 \ cathode \ readout \ channels \\ \end{array}$

CSC Production

CSC Production

Width (top), 1530 mm Width (bottom), 895 mm Length, mm 3380 mm Wire per plane 1028 Wire ch. per plane 64 Strip ch. per plane 64 HV segments per plane 5 Chamber weight, kg 276

Run1/2 CSC

CMS Luminosity

CMS Integrated Luminosity, pp, 2015, $\sqrt{s}=$ 13 TeV

UF/ PNPI HV system

1	Voltage regulation	0 – V max = 4000 V
2	Voltage regulation step	20 V
3	Voltage measurement resolution	10 V
4	Max current per channel	100 mkA
5	Current measurement resolution	100 nA

Muon Overlap Track Finder

Overlap region: $0.8 < /\eta / < 1.25$ The data of the three systems are implemented for the trigger decision: CSC, DT, RPC.

LHC Luminosity

GIF++ operational since April. The 13.9 TBq137Cs source is ~19 times stronger than the old GIF one (0.76 TBq). Attenuation filters allow a wide variation of the γ -flux. A muon beam is available.H4. 24.12.2015

24.12.2015

Gas studies

New regulations on greenhouse gas emission could hit us as soon as 2025 (40% reduction) and 2050 (100%).

A number of possible candidates for replacing CF4were proposed

Collaborators at PNPI have began investigating properties of such gases when used in Ar+CO₂ based gas mixtures

Molecular name	Chemical formula	CAS	Refrigerant identifier	GWP	Life time in athmosphere, years
Carbon Dioxide	CO ₂	124-38-9	R744	1	50-200
Tetrafluoromethane	CF_4	75-73-0	R14	7390	50000
Trifluoroiodomethane	CF₃I	2314-97-8	R13I	0	<1
Hexafluoroethane	C_2F_6	76-16-4	R116	12200	10000
Octafluoropropane	C_3F_8	76-19-7	R218	8830	7000
Octafluorocyclobutane	c-C ₄ F ₈	115-25-3	RC318	10300	3000

All these gases are used for dry plasma etching primarily related to silicon technology in microelectronics .•

CF3I has comparable Si-etching properties as CF4. So it is a good candidate

Straw aging test set up

Both aging tests and gas mixtures study are available

Attachment for electrons E ~ 0.01–0.5 eV in CF3I is 200 high in compare with CF4

G.Gavrilov, PNPI

.

ME4/2 Upgrade

