Эксперимент ATLAS

SUX 1

Научная сессия ученого совета ОФВЭ ПИЯФ 24 декабря 2015 года Олег Федин, Виктор Малеев

Дорожная карта ATLAS

LS1 = consolidation for maximizing energy reach of the LHC (8 to 14 TeV) LS2 = LIU (LHC Injector Upgrade) for beam intensity upgrade LS3 = HL-LHC for luminosity upgrade

Передняя часть мюонного спектрометра

- В Run1 и Run2, для мюонного триггера в передней области (end-cap) используются ТGC камеры
- ~90% срабатывания триггера на 1-ом уровне (L1) ложные (fakes)
- Увеличение порога по рТ для уменьшения загрузки триггера приведет к значительному уменьшению аксептанса
- При повышении светимости ожидается ухудшение эффективности реконструкции мюонных треков и разрешения мюонного спектрометра
- Ожидаются загрузки для HL-LHC 15 кГц/см2

Реконструированная инвариантная масса димюонной пары в моделированных Z'->µµ событиях при трёх уровнях светимости

24 декабря 2015

Причины замены MSW (1)

- При достигнутой средней светимости ~10³³ наблюдается превышение измеренного потока частиц над ожидаемым в ~1.5 раза
- Измерения выполненные в Run1 подтверждены в Run2
- Ожидается что при высокой светимости (7х10³⁴ см⁻¹с⁻¹)загрузка достигнет 15 кГц/см²
- При светимости ~1x10³⁴см²с⁻¹ MDT еще могут работать. Предел по загрузке для MDT 200-300 кГц/трубку (предел для CSC - 2 кГц/см²)

Детекторы для NSW

- Два типа камер выбраны для NSW (New Small Wheel)
- □ sTGC для триггера первого уровня:
 - способность определять bunch crossing;
 - восстановление сегмента трека за 1 мкс;
 - угловое разрешение <1 мрад;
 - пространственное разрешение <100 мкм (не зависит от угла падения).
- □ MicroMega для восстановления треков:
 - пространственное разрешение 50 мкм;
 - высокая гранулярность позволяющая разделять близкие треки;
 - способность работать при высоких загрузках так как небольшой коэффициент газового усиления и незначительный эффект пространственного заряда.

L1MU threshold (GeV)	Level-1 rate (kHz)
$p_{\rm T} > 20$	60 ± 11
$p_{\mathrm{T}} > 40$	29 ± 5
$p_{\rm T} > 20$ barrel only	7 ± 1
$p_{\rm T} > 20$ with NSW	22 ± 3
$p_{\rm T}>20$ with NSW and EIL4	17 ± 2

Конструкция sTGC камер

- Рабочая смесь 55% СО2 и 45%
 п-пентан
- □ Напряжение 2.9 кВ
- Пады прямоугольные, 8 см pitch
- З из 4-х падов используются в совпадении для грубой идентификации мюона из точки взаимодействия, таким образом определяются стрипы, которые считываются для точного измерения трека мюона.
- Азимутальная координата трека определяется по анодным проволокам

sTGC basic parameters

Cathode-anode spacing	1.4 mm
Wire spacing	1.8 mm
Cathode resistivity	100-200 kΩ/□
Strip width/ pitch	2.7/ 3.2 mm
Cathode-strip layers spacing	0.1 mm

Результаты испытаний сТЗК на пучке в Fermilab

π-мезоны

Испытывался на Fermilab Test Beam Facility (35 ГэВ п-мезоны) полномасштабный прототип sTGC камеры размером 1,2х1,0 м²

Результат:

- » разрешение ~40 мкм
- » стабильность разрешения ±3 мкм

У_{зтос} - У_{ріх} [µm] Разрешение в зависимости от номера Run (A-F) и слоя камеры (1-4)

Run A, layer 4

100 200

300

плохое разрешение соответствует случаю когда пучок попадал в поддержки анодных проволок

Результаты испытаний сТЗК на пучке в CERN

CERN H6 Test Beam Facility

$$F = \frac{P_n - P_{n+1}}{P_n + P_{n+1}}$$

- Испытывался на CERN H6 Test Beam Facility (130 ГэВ мюоны) полномасштабный прототип sTGC камеры размером 1.2 X 1.0 м²
- Измерялось мёртвое время для VMM1
- Измерялось распределение заряда между падами

The preliminary front-end electronics based on the VMM1 ASIC is not adapted to the long time drifting of the late clusters in the sTGC detector (change of base-line). This leads to a large dead time in its response, which in turn leads to an inefficiency of the system when running at high rate (typically 80 - 90% efficiency at 100 Hz/cm^2). To ensure that no inefficiency was due to

Старение - Результаты испытаний sTGC

- Тестировался прототип размером 10 X 20 см²
- □ Источник Sr⁹⁰
- □ Индуцированный ток 3.7 mA
- Площадь облучения ~1 см² (5 анодных проволок)
- Рабочее напряжение 3 кВ
- Скорость продувки 2.5 сс/тіп
- Измерялся ток и амплитуда импульсов
- 🗆 Накопленный заряд 6.72 С/см

New Small Wheel

- NSW представляет собой два диска (по диску на каждую сторону), состоящих из 16 секторов (8 малых и 8 больших).
- Каждый сектор состоит из 4-х типов детекторов.
- Два детектора на внутренних радиусах собираются с перекрытием как один модуль.
- Таким образом NSW состоит из 192 4-х слойных детекторов.
- □ Всего 768 sTGC камер.

sTGC размеры

Большой сектор

сборка sTGC камер

Прецизионный гранитный стол покрытый вакуумной резиной из под которой откачивается воздух

Позиционирование плат со стрипами обеспечивается двумя латунными вставками относительно прецизионных пинов на гранитном столе

Финансирование работ в ПИЯФ

- В рамках ФЦП 1.4 Проведение прикладных научных исследований, направленных на решение комплексных научно-технологических задач:
 - головной институт по эксперименту ATLAS ИФВЭ (Протвино)
 контракт с Мин.Обр. и Науки
 - Создание сверхбыстродействующих радиационно-стойких компонентов супердетектора новых тяжелых частиц АТЛАС Большого адронного коллайдера ЦЕРН для экспериментальных исследований рождения и распада частиц
- □ Первоначально на создание sTGC выделено 37.5 млн.руб на 2014-2016 годы.
- □ Финансирование на 2015 год было сокращено на 10% (секвестор бюджета РФ) => Полное финансирование 36.35 млн руб

Организация работы в ПИЯФ (I)

Для создания участка выделено помещение макетного зала корпуса 2а.

Организация работы в ПИЯФ (2)

Помещение макетного зала корпуса 2а после ремонта

Организация работы в ПИЯФ (3)

- Для организации сборки необходимо иметь "чистые" помещения с контролем температуры и влажности
- Разработан проект и начато сооружение

Организация работы в ПИЯФ (4)

Работы по созданию "чистых" помещений планируется закончить до конца января 2016 г

Организация работы в ПИЯФ (5)

Основные усилия были направлены на создание и покупку оборудования необходимого для сборки ТЗК камер

Прецизионные (20 мкм) гранитные столы

Машина для нанесения графита на стеклотекстолит

Машина для натяжения анодных проволок при их намотке

Вращающийся стол для намотки анодных проволок

План сборки ТЗК камер

Заключение

С наступающим Новым Годом!

BACK UP SLIDES

