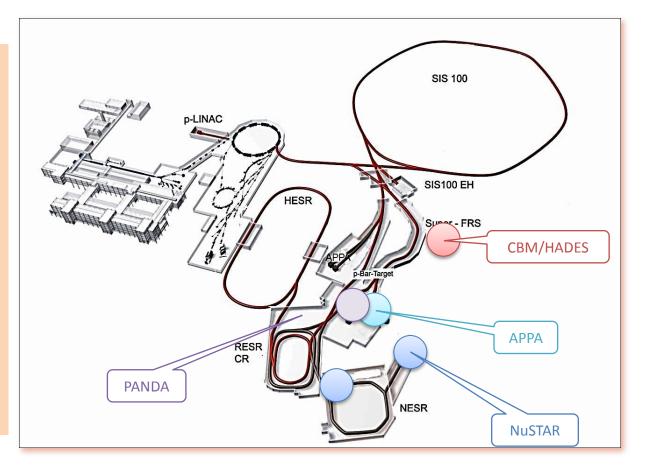


1

PANDA experiment and PNPI in PANDA

Antiproton proton collision @ 1.5-15 GeV HESR


- PANDA physics
- Status of FAIR/ HESR/PANDA
- PNPI Forward TOF with 70ps resolution
- FTOF TDR

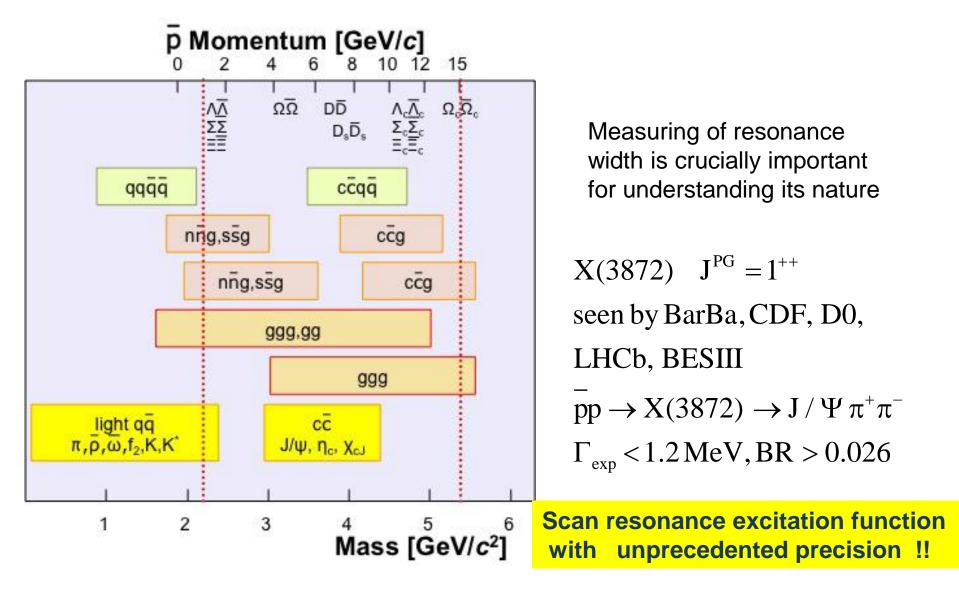
С. Белостоцкий Сессия УС ОФВЭ 2015

FAIR Facility for Antiproton and Ion Research

HESR ANTI PROTONS

Momentum range 1.5 -8.9 Gev L= $2x10^{31}$ cm⁻²s⁻¹ $\Delta p/p=5x10^{-5}$ at 5 GeV $\Delta E=250$ KeV !! Momentum range 1.5 -15 GeV L= $2x10^{32}$ cm⁻²s⁻¹ $\Delta p/p=5x10^{-4}$

Current Baseline FAIR Schedule From December 2015



Milestone Schedule

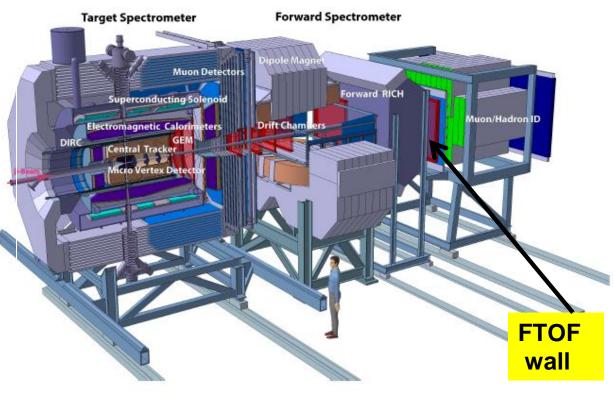
L. Schmitt, FAIR

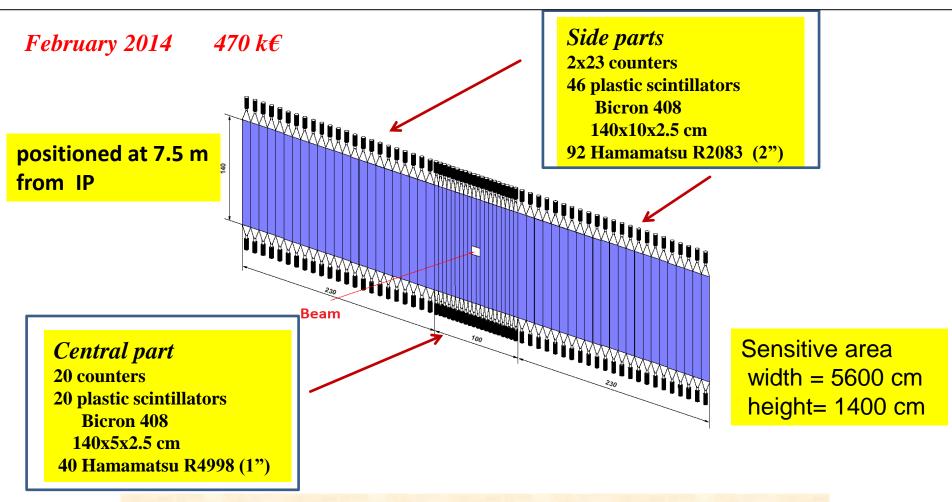
panda

PANDA exotic states: hybrids, gluonic excitations,...

PANDA detector

- 100 KeV mass resolution by beam momentum scan
- □1% produced particle momentum resolution
- □ 2x10⁷ s⁻¹ event rate capability
- □stand 10³² cm⁻² s⁻¹ inst. luminosity
- $\Box nearly 4\pi acceptance,$ high detection efficiency
- Decondary vertex reconstruction for D, K^0_S , Λ ($c\tau$ = 317 µm for D[±])
- **□**PID (γ, e, μ, π, K, p)
- Dphoton detection 1 MeV 10 GeV




Figure 2.1: Artistic view of the PANDA Detector

Targets: pellet H(D) target

frozen drops of 25-40µm, controlled position; Target station for hyper-nucleus physics; Wire targets for pbar-A interaction

Total integrated luminosity about 1.5 fb-1/year

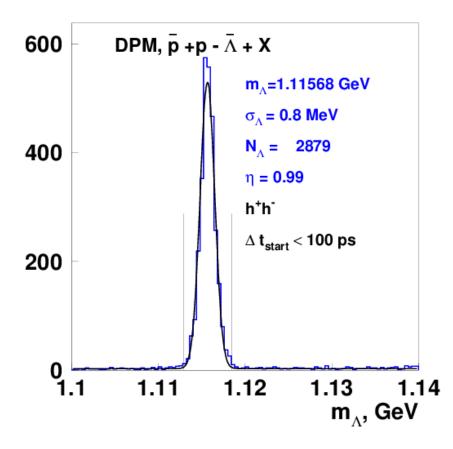
Forward TOF wall configuration

Bicron 408

(recommended for large TOF counters)Rise time0.9 nsDecay time2.1 ns1/e light attenuation length210cm

 Fast
 PMTs (hamamtsu)

 R4998 1" (R9800), R2083 2" (R9779)

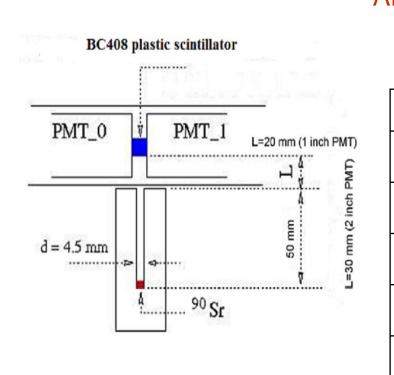

 Anode pulse rise time
 0.7-1.8ns

 TTS
 250-370ps (FWHM)

 Gain
 1.1-5.7x10⁶

Abar detection with FTOF

$$\overline{p} + p \rightarrow \overline{\Lambda} + X \quad \overline{\Lambda} \rightarrow \overline{p} + \pi^+$$



 $0.72 \times 10^6 \ pp$ interactions, 10 GeV

 $\overline{\Lambda}$ detected with high efficiency (20%) at weak selection criteria $N_{\Lambda} / N_{\overline{\Lambda}} \simeq 1/40$ Λ events also well detected

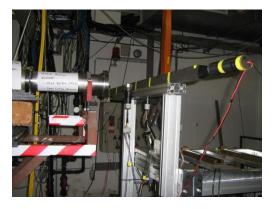
@ $10^6 s^{-1}$ target interactions (L $\approx 10^{31} s^{-1} cm^{-2}$) $N_{\overline{\Lambda}} = 4 \times 10^3 s^{-1}$!! can be used to tag exclusive reactions, e.g., $\overline{pp} \rightarrow \overline{\Lambda}\Lambda$ production 25×10⁶ events / 7 days

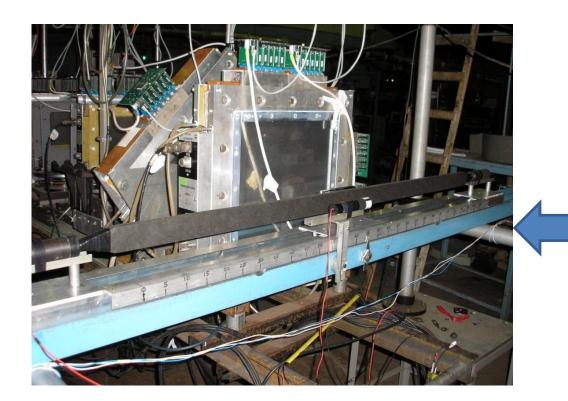
Prototyping at test station

After offline am correctio	· –	
PMT_1	σ_{TDC_1} (ps)	σ_{PMT} (ps)
R4998 (4998/4998)	72.	44.4
R9800 (4998/9800)	86.	64.6
R2083 (2083/2083)	72.6	44.9
R9779 (2083/9779)	64	56.5
XP2020 (2.5, 2.36kV)	82	52,3

2 MeV energy deposition, 2x10⁴ photons Track walk in scintillator $\sigma_{tr.w.} = 15 \text{ ps}$ Electronics contribution $\sigma_{el} = 30 \text{ ps}$

After corrections for electronics and track walk


Prototyping using proton beams


PNPI 1 GeV synchrocyclotron

740 and 920 Mev protons selected with magnetic spectrometer

COSY test beam in Juelich 2 GeV

MIP protons

Slab put horizontally in spectrometer focal plane at movable frame. MWPCs provide hit position with $\delta x \approx 1 \text{ mm}$

Prototyping summary

- The time resolution of 60–65 ps was obtained for the scintillation counters recommended for prototypes for the FTOF wall.
- It has been experimentally shown that optimal thickness of the scintillation slabs is 2.5 cm (slab length is 140 cm, width is 50 or 100 cm).
- The time resolution of 50 ps was obtained for the slabs of 2.5 cm width. Practical application of such slabs however would result in increase of number of channels which may confront the detector cost limitation.
- A precise measurement of the hit position seems crucial for time resolution on the level of 60 ps. Without independent information on hit position, the time resolution of 80 ps has been measured.
 - A satisfactory result was obtained for KETEK PM6660 (6x6 mm²) samples at test station. A raw timing resolution of $\sigma = 71$ ps (per a SiPM sample) was directly measured , and after corrections it was obtained $\sigma_{PM6660} = 66$ ps.
 - A very tentative test of radiation hardness of SiPMs has been made in PNPI using not powered S0931-50p SiPM sample exposed to 1 GeV proton beam. It was found that the radiation dose equivalent to 0.45 x 10¹¹ protons having passed through the active area of the sample is crucial for its operation capabilities.

Conclusion

- MC simulation demonstrates important functions of FTOF wall:
 - PID of forward emitted particles with momenta below 3-4 GeV
 - determination of event start time stamp
 - possibility to use Abar for detector calibration
- Maximum count rate in central part of FTOF wall at L =10³² cm⁻² s⁻¹ is below 3x10⁶ s⁻¹. Background related to e⁺e⁻ pairs production peaked at very low momenta is small.
- Prototyping is completed. Timing resolution of 60 ps is measured. The measurements were performed using 920 MeV protons selected by the magnetic spectrometer.
- Without hit position precise information, timing resolution of 80 ps has been obtained.
- TDR drafting has not yet been finished. It is planned to circulate within Collaboration in March.

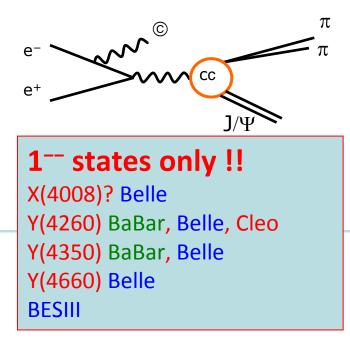
Supporting slides

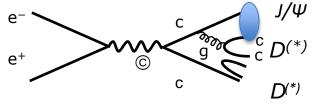
PANDA Physics

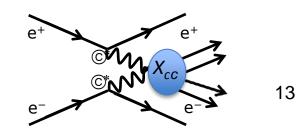
Charmonium Spectroscopy.

 $\overline{P}P \rightarrow \overline{C}C$ Measurement of masses and width of charmonium

states with unprecedented precision of 100-200 KeV


 $\overline{P}P \rightarrow \overline{C}Cg$ (hybrids) Search for Gluonic Excitations. objects with exotic quantum numbers J^{PC} X, Y, and Z (like) states, pure glue, multiquark states


<u>Electromagnetic Processes</u> $PP \rightarrow e^-e^+, e^-e^+\gamma$ proton form factors in the time-like region $S = 14 (GeV/c)^2$ up to Hyperon biner reactions. Production cross section and mechanism, polarization


 $\overline{P}P \rightarrow \overline{\Lambda} \Lambda, \Xi \Lambda, \overline{\Omega} \Omega, \overline{\Lambda}_{C} \Lambda_{C}, \dots, \overline{\Omega}_{C} \Omega_{C}$

Competing with

Hypernuclei with more than one strange hadrons.

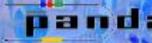
colliders e+e-

TDR Schedule

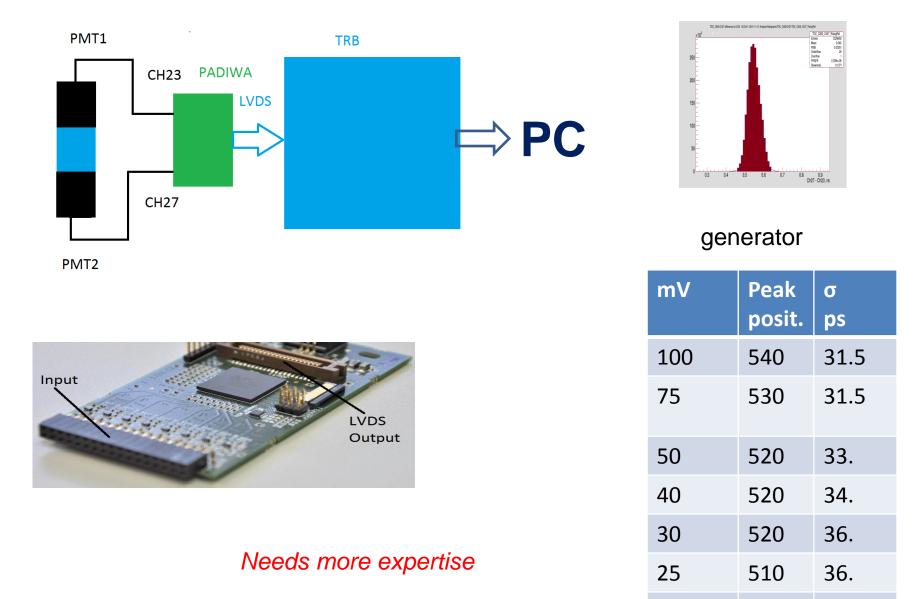
Submission 2015:

Forward Shashlyk: June 17

Shifted to early 2016:

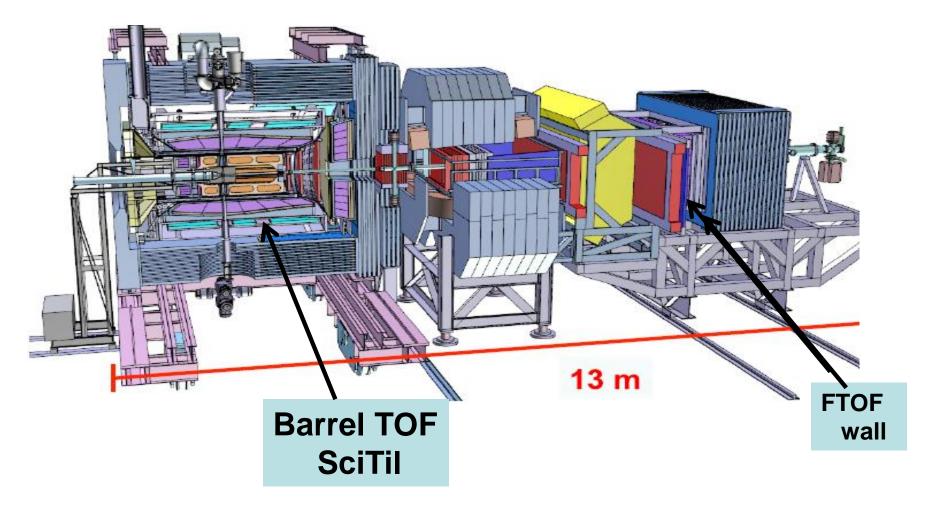

- Luminosity Detector
- Forward Time of Flight
- Forward Tracking Caveat: Simulation!

Submission 2016/17:


- Barrel DIRC
- Hypernuclear Setup
- Pellet Target Addendum
- GEM Tracker
- SciTil / Barrel ToF
- Detector Controls
- DAQ and Computing
- Disc DIRC

System	Submission Expected	M3 (Approval) Expected
Target Spectrometer EMC		08/08/2008
Barrel EMC		08/08/2008
Backward Endcap EMC	- Carlotter	08/08/2008
Forward Endcap EMC		08/08/2008
Solenoid		05/21/2009
Dipole		05/21/2009
Micro Vertex Detector (MVD)		02/26/2013
Straw Tube Tracker (STT)		01/29/2013
Cluster Jet Target	1000	08/28/2013
Muon System	1	09/22/2014
Forward Shashlyk Calorimeter	17/8/2015	1/2016
Luminosity Detector	3/2016	9/2016
Forward TOF	3/2015	9/2016
Forward Tracking	3/2015	9/2016
Barrel DIRC	6/2016	12/2016
Hypernuclear Setup	6/2016	12/2016
Pellet Target	6/2016	12/2016
Planar GEM Trackers	9/2016	3/2017
Barrel Time of Flight (TOF)	9/2016	3/2017
Controls	6/2017	12/2017
DAQ	6/2017	12/2017
Endcap Disc DIRC	6/2017	12/2017
Computing	9/2017	3/2018
Silicon Lambda Disks	tba	tba
Forward RICH	tba	tba Status 3/11/201

For the items "Interaction Region", "Supports" and "Supplies" no TDRs are planned, only specification documents.


Application of TRB-3 readout underway in PNPI

Forward TOF wall functions

- PID of forward emitted particles using time-of-flight information: protons < 4.5 GeV, kaons < 3.5 GeV, pions < 3. GeV where forward RICH is not effective time resolution of 50-100 ps required FS momentum resolution 0.01
- Event start stamp reference time
- Possibility to use Λbar for detector calibration
- Can be used as start for determination of the drift time in DCs

PANDA Time-of-Flight detectors

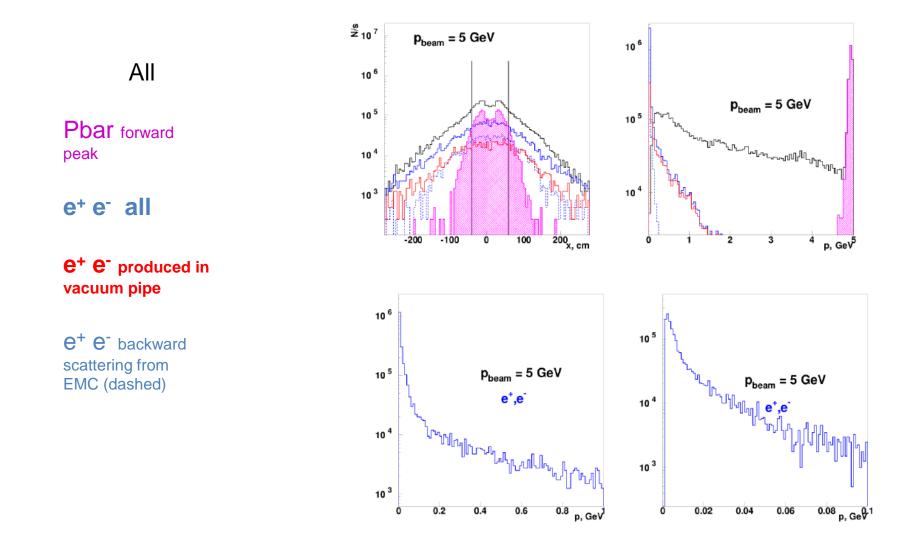
• MC simulation.

- time dependent event reconstruction analysis ?? lack of manpower

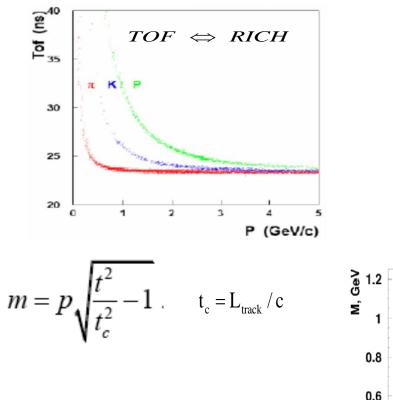
Related to FSTT.

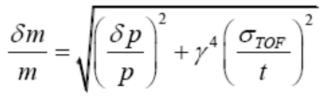
- FS momentum resolution $\Delta p/p$ must be 1% -vertical hit position uncertainty ? $\Delta y=1$ mm corresponds 5.3 ps (BC-408) expected at present design FSTT $\Delta y=5-10$ mm \rightarrow up to $\Delta(tof) \approx 60$ ps -uncertainty in track reconstruction? $\Delta L_{track} / L_{track} = 0.1\% \rightarrow \Delta(tof) \approx 30$ ps

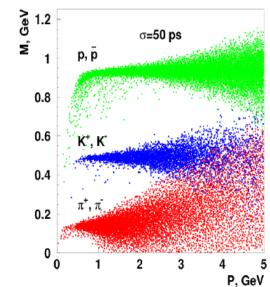
• FTOF wall position behind RICH.

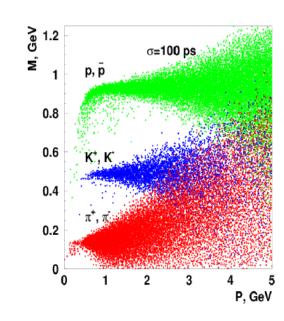

- RICH width is smaller than sensitive area of FTOF wall, deterioration of track information at FTOF wall side slabs

• FTOF wall width is 5.6 m while FSTT last station width is 3.9 m, thus side parts of FTOF wall are out of FSTT acceptance.

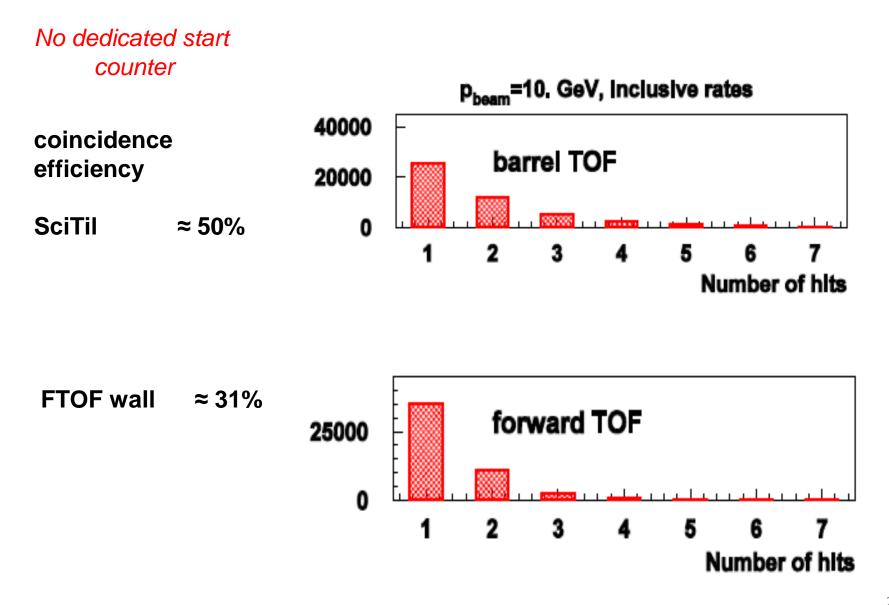

reduce FTOF wall width ??

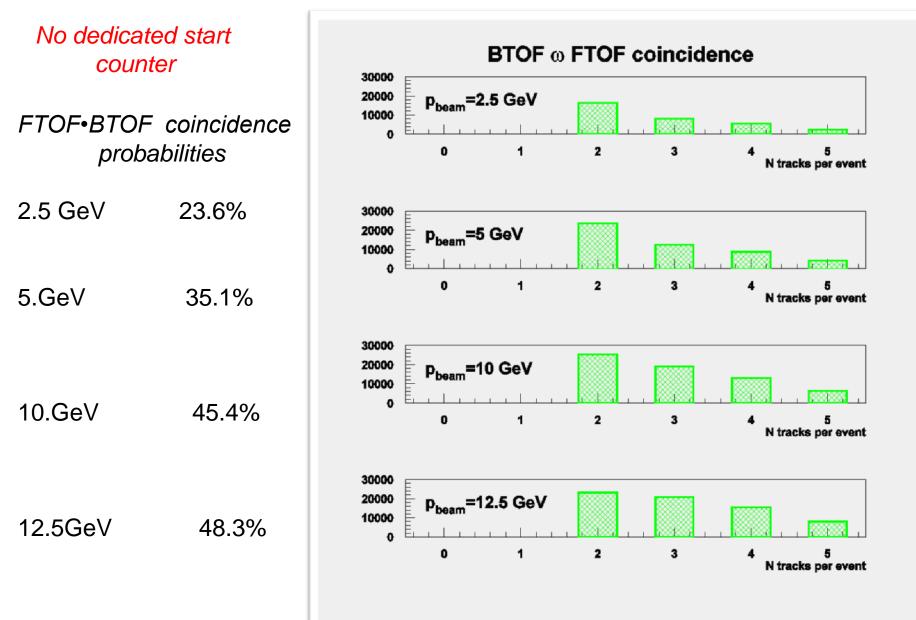

- Hardware:
 - finalize TRB-3 readout tests
 - definitive decision on Hamamatsu PMs (type, housing, divider, price,.).
 - on-line laser calibration system (??)
 - HV-power supply: commercial or PNPI production HVDS3200


Count rates of FTOF wall and e⁺ e⁻ background at 5 GeV (3.5 MHz)

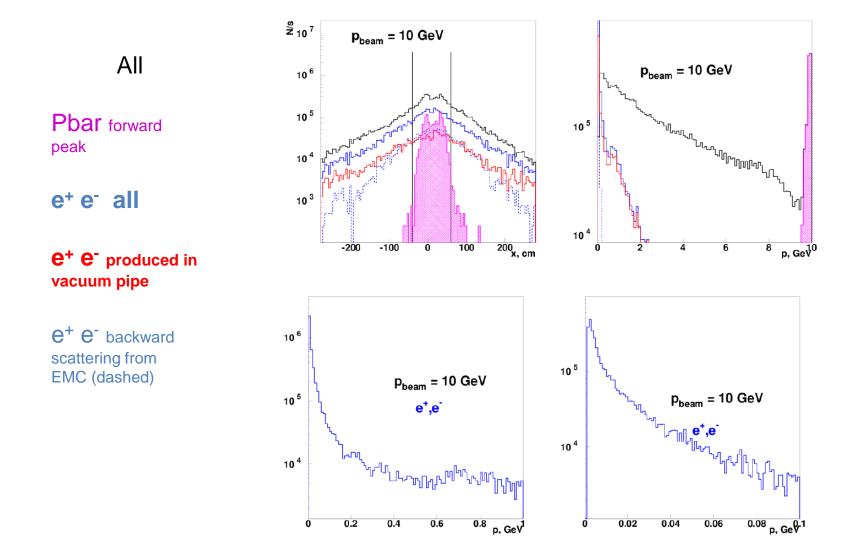


FTOF wall hadron ID



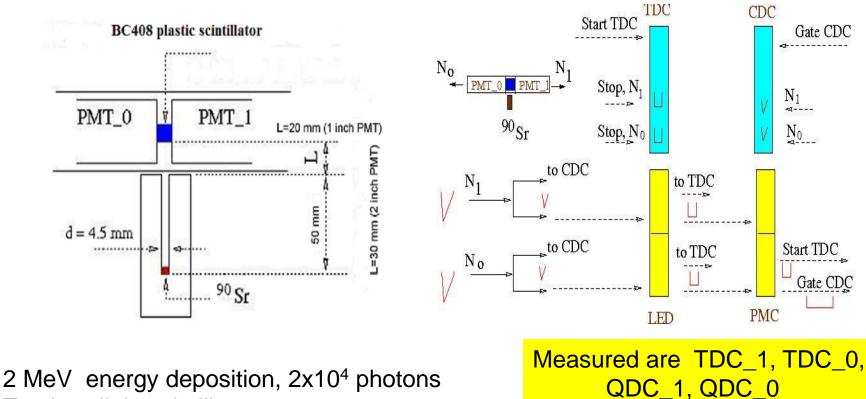

TOF resolution $\sigma_{TOF} = 50 \text{ or } 100 \text{ ps}$

FS momentum resolution $\Delta p/p=0.01$


Track multiplicity/event in TOF detectors at 10 GeV

FTOF wall and barrel TOF interplay

Count rates of FTOF wall and e⁺ e⁻ background at 10 GeV (3.5 MHz)

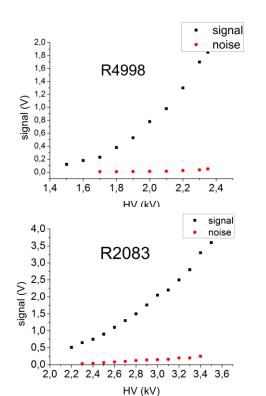


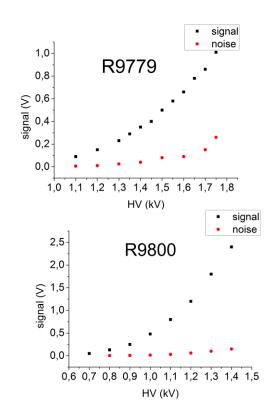
Detection Efficiency of FTOF wall

 $0.72 \times 10^6 \ \overline{pp}$ interactions @10 GeV, $\frac{\sigma(p)}{\rho} = 0.01$, $\sigma(TOF) = 50 \ ps$ р

		Generated by DPM	Detected by FTOF wall	detection efficiency
	π^-	880346	172188	0.195
	π^+	877255	150440	0,171
	K^-	30179	5820	0.192
	K^+	26811	2863	0.107
	\overline{p}	453293	202174	0.446
Both	p	398323	51241	0.129
proton and pion	$\overline{\Lambda} \rightarrow \overline{p} + \pi^+$	19874	3840	0.193
detected	$\Lambda \to p + \pi^{-}$	19518	≈100	$\approx 5 \cdot 10^{-3}$
with FTOF				

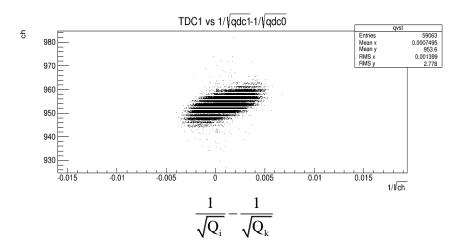
Prototyping. Test stand layout and electronics



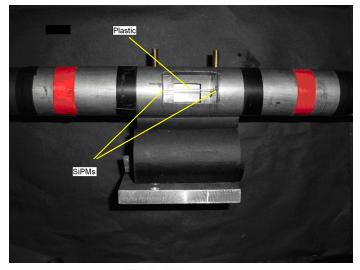

Track walk in scintillator $\sigma_{tr.w.} = 15 \text{ ps}$ Electronics contribution $\sigma_{el} = 30 \text{ ps}$

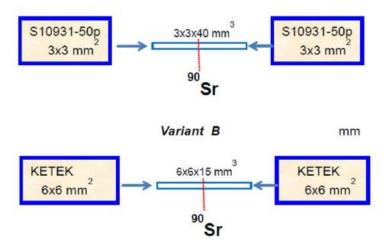
25

PMT characteristics


PMT	Photocathode diameter (mm)	Anode pulse rise time (ns)	Electron transition time (ns)	Transition time spread (ps)	Gain / 10 ⁶	Typical voltage (V)
R4998	25 (1 inch)	0.7	10	160	5.7	2250
R9800	25 (1 inch)	1.	11	270	1.1	1300
R2083	51 (2 inch)	0.7	16	370	2.5	3000
R9779	51 (2 inch)	1.8	20	250	0.5	1500
XP2020	51 (2 inch)	1.6	28	??	30	2000

Test station results


After offline amplitude corrections

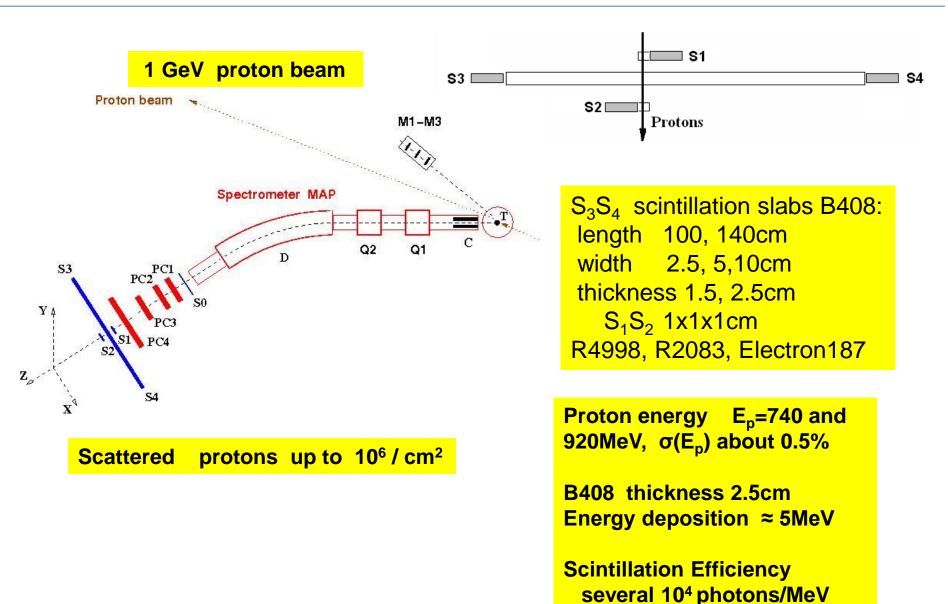

PMT_1	σ_{TDC_1} (ps)	σ_{PMT} (ps)
R4998 (4998/4998)	72.	44.4
R9800 (4998/9800)	86.	64.6
R2083 (2083/2083)	72.6	44.9
R9779 (2083/9779)	64	56.5
XP2020 (2.5, 2.36kV)	82	52,3

After corrections for electronics and track walk

SiPM timing tests

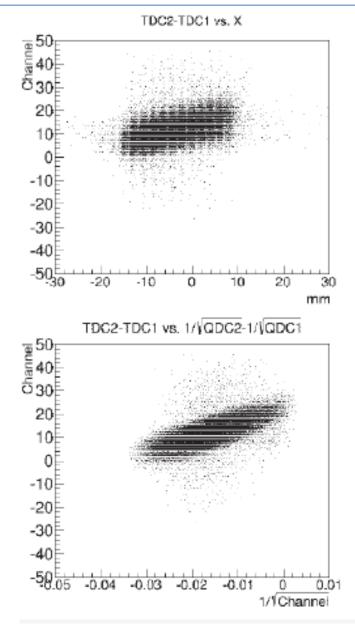
Variant A

Amplitude correction $\Delta t = \Delta t_0 - a(\frac{1}{\sqrt{q_1}} - \frac{1}{\sqrt{q_2}}) - b$


variant A S10931 after corrections $\sigma = 103 \text{ ps}$

variant B KETEK 6660 after corrections $\sigma = 65 \text{ ps}$

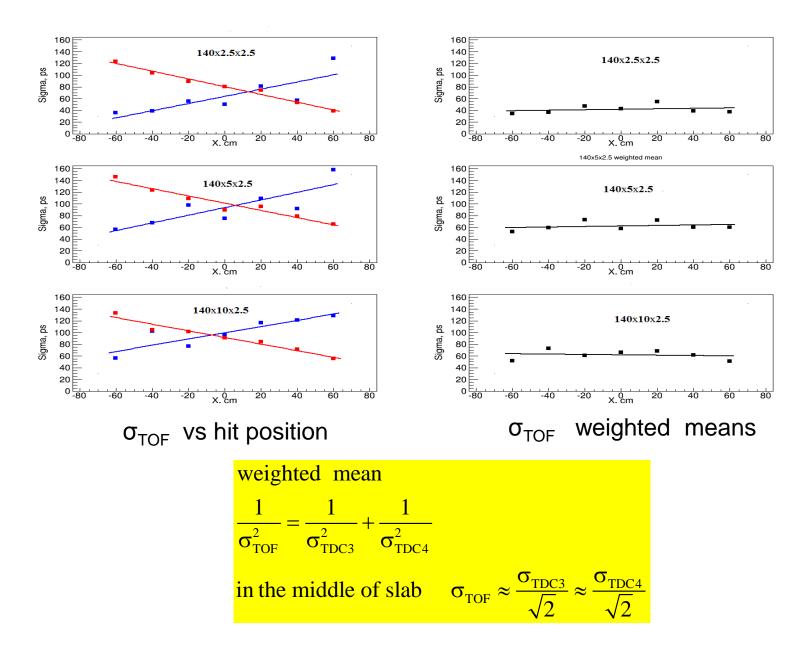
Supply voltage (V)	Signal amplitude (mV)	Noise amplitude (mV)	without ⁹⁰ Sr	⁹⁰ Sr	σ _{TDC_1} (ps)	$\frac{\sigma_{\text{TDC}_1}}{\sqrt{2}}$ (ps)	σ _{KETEK} (ps)
26.35	20÷30	~ 0.3	(mkA) 7.5	(mkA) 9	120	84.8	81.1
26.85	70÷90	~ 0.5	11	13	100	70.7	66.1


Table 4. Main parameters and time resolution of KETEK 6660.

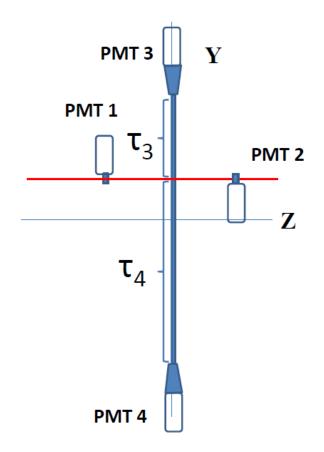
Beam tests at 1 GeV PNPI SC

29

Off-line time resolution


Hit position and pulse amplitude corrections

on event basis calculated are


$$\tau_{13}, \tau_{14}, \tau_{23}, \tau_{24}, \tau_{34}$$

$$\tau_{nk} = t_n - t_k - a(\frac{1}{\sqrt{q_n}} - \frac{1}{\sqrt{q_k}}) - bx - c,$$

x hit position along the scintillation slab, t_n, t_k time stamp measured with TDC, q_n, q_k measured with QDC, a,b,c free parameters to minimize τ_{nk} timing resolution is σ of (corrected) τ_{nk} distribution.

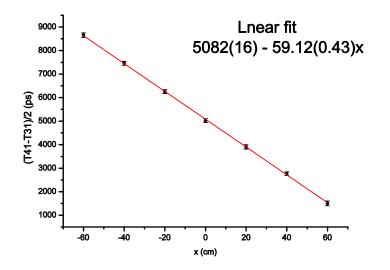
Timing resolution results from 1 GeV PNPI SC

Time resolution without hit position correction

 $\tau_3 + \tau_4 = \tau$ constant light propagation time through slab

 $T_3 = T_1 + t + \tau_3$ $T_4 = T_1 + t + \tau_4$

$$(T_3 - T_1) + (T_4 - T_1) = T_{31} + T_{41} = 2t + \tau$$


sensitive to measured time, not sensitive to hit position

$$(T_3 - T_1) - (T_4 - T_1) = T_3 - T_4 + \tau - 2\tau_4$$

sensitive to hit position, not sensitive to measured time

Time and hit position measurements using TDC information only

X	(T ₄₁ -T ₃₁)/2	σ ₄₃₁ -	(T ₄₁ +T ₃₁)/2	σ ₄₃₁ +	(T ₄₂ -T ₃₂)/2	σ ₄₃₂ -	(T ₄₂ +T ₃₂)/2	σ ₄₃₂ +
cm	ps	ps	ps	ps	ps	ps	ps	ps
60	1504	99	11950	148,5	1503,5	100,5	11580	120,5
40	2770,5	74	11865	138,5	2770,5	74,5	11510	102
20	3904	90,5	11975	145,5	3904	90,5	11630	114
0	5025	76	11920	136,5	5025	75,5	11580	103,5
-20	6255	81,5	11940	150	6255	82,5	11630	115,5
-40	7460	84	11895	143,5	6890	85	11560	112,5
-60	8655	93,5	11945	148,5	8655	93,5	11600	121

 $\tau = 59.12 \,\text{ps} \,/\,\text{cm} \times 140 \,\text{cm} = 8276.8 \,\text{ps}$

 $v_{BC408} = 1/59.12 = 0.17$ mm/ps speed of light in BC408 = 0.19 mm/ps

hit position resolution 80ps x 0.17mm/ps = 13.6 mm Off line time resolutions obtained as weighted means with amplitude and hit position correction using 920 MeV protons

scintillation slab dimensions (cm)	PMT	timing resolution σ (ps)	comment
140 × 10 × 2.5	Hamamatsu R2083 (both ends)	63	RecommendedforaprototypefortheFTOFwall.
140 × 5 × 2.5	Hamamatsu R4998 (both ends)	60	Recommended for a prototype for the FTOF wall
$140 \times 2.5 \times 2.5$	Hamamatsu R4998 (both ends)	43	a variant of a prototype with smaller stintillator width
140× 5 × 1.5	Hamamatsu R4998 (both ends)	≈ 88	projected originally for the FTOF wall
140 × 2.5 × 2.5	Electron PMT 187 (both ends)	78	magnetic field protected,
1×1×1	Electron PMT 187, Hamamatsu R4998	49	"net" timing resolution of one PMT

34

Count rates in frame of DPG

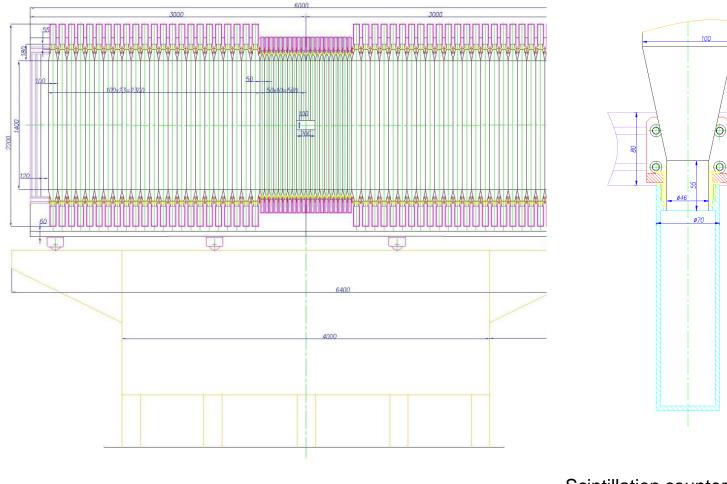
Number of events selected from 100 generated PP collisions chosen arbitrarily, at 10 GeV

$\bar{p} p \rightarrow \bar{p} p$	24	$\bar{p} p \rightarrow \bar{p} p \pi^0$	5
$\bar{p} p \rightarrow \bar{n} n \pi^0$	3	$\bar{p} p \rightarrow \bar{p} n \pi^+$	3
$\bar{p} p \rightarrow \bar{p} p \pi^+ \pi^-$	2	$\overline{p} p \rightarrow \overline{n} p \pi^0 \pi^-$	2
$\bar{p} p \rightarrow \bar{p} n \pi^+ \pi^0$	2	$\overline{p} p ightarrow \overline{p} p \pi^0 \pi^+ \pi^-$	9
$\overline{p} p \rightarrow \overline{n} p \pi^0 \pi^+ \pi^- \pi^-$	4	$\overline{p} p \rightarrow \overline{p} p \pi^0 \pi^+ \pi^- \pi^+ \pi^-$	4
$\overline{p} p \rightarrow \overline{\Lambda} n \overline{K} {}^{\scriptscriptstyle 0} \pi^{\scriptscriptstyle 0} \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle -}$	1		

Hadron count rate by TOF wall at 0.35x10⁷/s interactions in target

p̄ beam momentum, GeV/c	Pion rate, 1/s	Kaon rate, 1/s	Proton rate, 1/s	Antiproton rate, 1/s
2	3.9×10 ⁵	2×10 ³	1.2×10 ⁴	1.07×10 ⁶
5	6×10 ⁵	7.8×10 ³	3.8×10 ⁴	9.5×10 ⁵
15	9.6×10 ⁵	4.7×10 ⁴	3.2×10 ⁴	8.2×10 ⁵

High rate of π^0 Bgr expected from $\pi \rightarrow 2\gamma \ \gamma \rightarrow e^+ e^-$

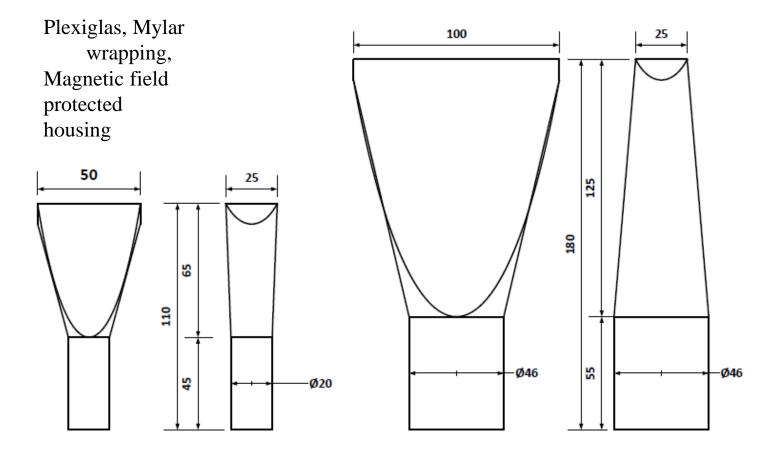

Cost estimation update

FTOF wall

Plastic scintillators	
B408 20u.140x5x2.5cm+46u.140x10x2.5cm	40 k€
PMTs 1" 760 € 40u. +5u.(spare)	42
PMTs, 2" 1270 € 92u.+20u.(spare)	155
FEE+DAQ	35
HV power supply	22
Monitoring/calibration system	25
Supporting structure, mechanical items	75
Test stand for mass production	35
Transportation, custom expenses	42
	• • • • • • • • • • • • • • • •
	471 k€

From RRB February 2014 470 k€

FTOF wall mechanics.



FTOF wall front view

Scintillation counter mechanical components

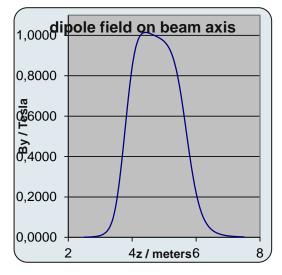
50

LIGHT GUIDES FOR 1" AND 2" PMTs

FSTT impact on FTOF

Tracking		Active area		Number of modules	Number of straw tubes
station	$z_{min} - z_{max}$	w	h		
	[mm]	[mm]	[mm]		
1	2954-3104	1338	640	4x10=40	4x288=1152
2	3274-3424	1338	640	4x10=40	4x288 = 1152
3	3945-4245	1782	690	4x12 = 48	4x384 = 1536
4	4385-4685	2105	767	4x14 = 56	4x448=1792
5	6075-6225	3923	1200	4x27 = 108	4x824 = 3296
6	6395-6545	3923	1200	4x27 = 108	4x824 = 3296

Table 1.1: Positions, width and height of active area, number of modules and number of straw tubes in the Forward Tracker stations. In the second column z-coordinate of the first and forth double layers are given. The indicated width and height of active area corresponds to dimensions of the first double layer with vertical straws in individual tracking stations.


Dipole TOF positioned inside the dipole magnet gap as

planned for TDR

Projected 2x10 scintillation slabs 80÷100x10x2.5cm readout from each end with Electron PMT 187

Diameter	30mm
Photocathode	20mm
Anode pulse rise time	1.4ns
TTS	≈500ps
Gain	5x10 ⁵
W.m. emission	380nm
(80%	at 420nm)
HV	1800v

tested in magnetic field up to 0.5T

Alternative solution SiPMs provided timing resolution better than 100ps

radiation hardness??

Not sensitive to mag. F.(!)

SiPMs(hamamatsu) S10931-50p, S10931-100p

active area3x3mmPixels3600Gain $7.5x10^5 - 2.4x10^6$ W.m. emission440nmTTS0.5-0.6ns(FWHM)

TDR TABLE OF CONTENT

1. EXECUTIVE SUMMARY

1.1 INTRODUCTION: THE PANDA EXPERIMENT AT HESR, GSI

1.2.FORWARD TIME-OF-FLIGHT DETECTORS

1.3 EXPERIMENTAL TESTS OF PROTOTYPES

1.4.CONCLUSION

2. PHYSICS CASE OF FTOF, MC STUDY 2.1 FORWARD SPECTROMETER TOF PID 2.2 FTOF WALL COUNT RATES, BACKGROUND 2.3 HADRON DETECTION WITH FTOF WALL 2.4 STRANGE HYPERONS DETECTION

2.6 INTERPLAY OF FTOF WALLAND BARELL TOF

3. TECHNICAL DESIGN CONSIDERATIONS OF FTOF WALL

3.1 PLASTIC SCINTILLATORS AND PHOTO DETECTORS

3.2 DIGITIZATION OF SCINTILLATION COUNTER RESPONSE

4.EXPERIMENTAL STUDY OF PROTOTYPES

4.1 STUDY OF PHOTODETECTORS USING TEST STATION

4.2 PROTPTYPING AT PROTON BEAMS

4.3 FTOF PROTOTYPING SUMMARY

5. MECHANICS, CABLING AND INTEGRATION

6. CALIBRATION AND MONITORING

7. PROJECT MANAGEMENT (SCHEDULE, RISK ASSESMENT, CONTRACT, ETC.)

8. CONCLUSION