HERMES and OLYMPUS experiments

STUDY OF NUCLEON (HADRON) STRUCTURE USING ELECTRON BEAMS AT DESY

HERMES data taking period 1995-2007, data analysis OLYMPUS data taking 2012, data analysis

С.Белостоцкий, А.Киселев, В.Вихров, А.Изотов, Ю.Нарышкин, А. Крившич, С.Манаенков, О.Миклухо, Д.Веретенников, Г,Гаврилов, В.Андреев, Л.Уваров

С. Белостоцкий Сессия УС ОФВЭ 2015

Main motivation: "spin crisis"

Π

HERA RING

 $P_{beam} \sim 50\%$

Впервые реализована идея само-поляризации пучка электронов в магнитном поле ускорителя:

HERMES most important contributions to nucleon spin structure

Quark spin from DIS inclusive $\Delta \Sigma = 0.33 \pm 0.03_{exp} \pm 0.03_{model}$

Quark spin from DIS semi-inclusive $\Delta \Sigma = 0.36 \pm 0.03_{exp} \pm 0.02_{model}$

Gluon polarization estimation $\Delta g/g = 0.05 \pm 003_{stat} \pm 0.01_{syst}$

□First measurements of Sivers DF and Collins FF

Detailed study of GPDs

 \Box A-hyperon polarization

Spin-dependent exclusive vector meson production

not yet

fully

published

Current analysis. Electroproduction of vector mesons Сергей М.

Amplitude ratios

Spin transfer from polarized beam to Λ in DIS

OLYMPUS. Proton form factor puzzle and TPE

Statistical uncertainty

as realized

Data analysis. Double ratio, control measurement, large $Q^2 \dots$

1

<u>At large Q²</u> statistics is not sufficient for double ratio intensive MC study of acceptance, efficiency.... tracking etc.

The progress includes

- the analysis of 80% of the Olympus dataset;
- the achievement of good agreement between the luminosity measurement of the 12° MWPC and the slow control luminosity;
- a further improvement of the calibration and the description of the TOF and tracking chambers;
- the achievement of reasonably good agreement for the MC-data comparison.

The PRC has still some remaining concerns:

- There is still no understanding why the symmetric Moeller/Bhabha detector does not provide the best luminosity measurement in the experiment. The PRC feels it is extremely important to clarify the reason for this mismatch.
- There is unfortunately not yet a detailed idea what type of systematic precision can be achieved at the end.

The PRC awaits with eagerness the first results.

BACKUP SLIDES

<u>C</u>

Ю.Н.С.Б. К.Я.

$$\vec{e} + p \rightarrow \vec{e} + \vec{h} + X \quad P_{h} \sim D_{LL}^{h} \times P_{beam}$$

Λ spin structureNaïve CQM $\Delta \Sigma = 1$ $\Delta u = \Delta d = 0$ $\Delta S = 1$ SU(3)_f S.B. using HERMES $\Delta \Sigma = 0.32$ $\Delta u = \Delta d = -0.16$ $\Delta s = 0.64$

L

$$D_{LL}^{\Lambda}(x,z) = \sum_{f=u,d,s,...} D_{LL,f}^{\Lambda}(z) \otimes_{f}^{\Lambda}(x,z)$$
$$D_{LL,f}^{\Lambda}(z) = \frac{\Delta F_{f}^{\Lambda}}{F_{f}^{\Lambda}} \quad \text{access to spin-fragmentaton f-n}$$
$$partial spin transfer$$

 $D_{LL,f}^{\Lambda}$ is strongly related to Λ spin structure i.e, $D_{LL,f}^{\Lambda}$ is a measure of poorly known u,d-quark polarization in Λ

Expectation

$$\mathbf{D}_{\mathrm{LL}}^{\mathrm{A}} \approx \mathbf{D}_{\mathrm{LL},\mathrm{u}}^{\mathrm{A}} \leq \mathbf{0}$$

Publication statistics (Nov 2015)

HERMES Publications

Publication schedule for priority analysis (Nov 2015)

$$\langle \boldsymbol{E}_{\boldsymbol{\gamma}} \rangle = \langle \boldsymbol{E}_{\boldsymbol{e}} - \boldsymbol{E}_{\boldsymbol{e}'} \rangle \simeq 15.6 \; \boldsymbol{GeV}$$

$$\zeta^{\Lambda} \simeq \frac{E^{\Lambda}}{E_e} < 0.25 \ \sqrt{t} = 3.31 GeV$$

 Λ and other hyperon spin structure still poorly established

SU(6) spin-1/2 hyperon octet ΔΣ=0.32 F=0.47 D=0.81

	∆u	Δd	Δs
p(uud)	0.84	-0.43	-0.09
n(udd)	-0.43	0.84	-0.09
A(uds)	-0.16	-0.16	0.64
$\Sigma^+(uus)$	0.84	-0.09	-0.43
$\Sigma^0(uds)$	0.375	0.375	-0.43
Σ ⁻ (dds)	-0.09	0.84	-0.43
Ξ ⁰ (uss)	-0.43	-0.09	0.84
Ξ ⁻ (dss)	-0.09	-0.43	0.84

Λ spin structure

Jaffe assumption ($\Delta s_{proton}=0$)

 $\Delta \Sigma = 0.586 \Delta u = \Delta d = -0.073 \Delta s = 0.732$

Burkard & Jaffe from EMC result

 $\Delta \Sigma = 0.12$ $\Delta u = \Delta d = -0.23$ $\Delta s = 0.58$ (±0.04)

L

DSPIN 2012

<u>Λ and λ events selection</u>

<u>h[±]h⁻ pair background suppression</u>

leading π or K rejection using threshold Cherenkov det. (1996-1997) or RICH (1998-2007)

vertex separation cut: distance between V₁ *and* V2 *vertices* > 5 *cm*

$$\frac{dN}{d\Omega_{p}} = \frac{dN_{0}}{d\Omega_{p}} (1 + \alpha \vec{P}^{A} \times \hat{\vec{k}}_{p}) = \frac{dN_{0}}{d\Omega_{p}} (1 + \alpha_{A} P_{B} \sum_{i \neq x, y, z} D_{Li}^{A} \cos \theta_{i})$$

$$\alpha_{A + p + x^{-}} = 0.642 \pm 0.013 \quad \alpha_{\overline{A} + \overline{p} + \pi^{+}} = -0.642 \pm 0.013$$

For beam helicity balance case

$$\begin{bmatrix} P_{B}^{2} \end{bmatrix} = \frac{\int P^{2}(t)L(t)dt}{\int L(t)dt} = 0$$

$$\frac{1}{n} \sum_{y=1}^{N} (D^{2}(y) \cos \theta_{i} \cos \theta_{k})_{y}$$

$$= \sum_{y=1}^{N^{h}} (P_{B}D(y) \cos \theta_{i})_{y}$$

Вклад ПИЯФ в эксперимент

отка концепции, организация производства,

