

Discussion SM Higgs boson at LHC: Update summary Victor T. Kim

Session of Scientific Council of High Energy Physics Division PNPI NRC KI, Gatchina, December 25, 2014

HEPD Council Session, PNPI, Dec. 25, 2014

"Higgs boson at LHC" Victor T. Kim

Search for SM Higgs boson: production

HEPD Council Session, PNPI, Dec. 25, 2014

"Higgs boson at LHC" Victor T. Kim

Search for SM Higgs boson: decay modes

Search for SM Higgs boson: cross sections

Бозон Хиггса Стандартной Модели: свойства

Первые измерения констант связи нового бозона с бозонами и фермионами: согласие сечения образования и вероятностей распадов с СМ на уровне ~80%

ATLAS: ATLAS-CONF-2014-009

CMS: CMS-PAS-HIG-14-009

-2

0

-4

2

 \tilde{B} est fit $\sigma/\sigma_{_{SM}}$

6

Спин-четность и тензорная структура J^{PC}=0⁺⁺ в согласии с СМ

2

Исключены: спин-2 - 99% и спин-1 при любой смешанной четности - 99.999%

ATLAS: PLB 726 (2014) 120 CMS: PRD 89 (2014) 092007

1.5

1

Signal strength (μ)

HEPD Council Session, PNPI, Dec. 25, 2014

 $\mu = 1.30^{+0.18}$

 $\sqrt{s} = 7 \text{ TeV} \int Ldt = 4.6-4.8 \text{ fb}^{-1} -0.5$

√s = 8 TeV ∫Ldt = 20.3 fb⁻¹

-0.17

Combined

0.12

0.5

0

"Higgs boson at LHC" Victor T. Kim

 $H \rightarrow \tau\tau$ (ttH tag)

 $H \rightarrow ZZ (0/1 \text{ jet})$

 $H \rightarrow ZZ$ (2 jets)

Бозон Хиггса Стандартной Модели

Измерения массы ATLAS и CMS согласуются между собой

ATLAS: PRD 90 (2014) 052004

CMS: CMS-PAS-HIG-14-009 EPJC 74 (2014) 3076 PRD 89 (2014) 092007

Channel	Measured mass, GeV	Channel	Measured mass GeV
Η→γγ	125.98 ±0.42 (stat) ±0.28 (syst)	Η→γγ	124.70±0.31 (stat) ±0.15 (sys
H→ZZ [*] →4/	124.51 ±0.52 (stat) ±0.06 (syst)	H→ZZ [*] →4/	125.6±0.4 (stat) ±0.2 (syst)
Combined	125.36 ±0.37 (stat) ±0.18 (syst)	Combined	125.03±0.26 (stat) ±0.14 (syst

François Englert and Peter Higgs Photo: © CERN 2013 Nobel Prize in Physics Новый бозон открытый ATLAS и CMS при 7 и 8 ТэВ:

Victor T. Kim

- сечение образования согласуется с СМ
- констаты связи согласуются с СМ
- свойства спин-четность согласуются с СМ

ATLAS и CMS продолжат исследования при 13 ТэВ в 2015 году

SM Higgs boson:

Backup slides

HEPD Council Session, PNPI, Dec. 25, 2014 "Higgs boson at LHC" Victor T. Kim

SM problems: Naturalness, fine tuning, ierarchy

*** Non-naturalness of scalar fields**

```
Fermions: Chiral symmetry m^2=m_0^2 + C \text{ Log}[\Lambda^2]
K. Wilson (1970)
Susskind (1979), 't Hooft (1979)
```

```
Scalar: mass divergence: m^2 \sim m_0^2 + \Lambda^2
Higgs mass ~ \Lambda^2
in SM strong EW interaction at 2-4 TeV
```

* Naturalness in SM extends up to 6-10 TeV G. Pivovarov & V. Kim (2009)

```
If no quadratic divergences -> SM with Higgs boson 125 GeV
validity extends up to to Planck mass scale
(stable vacuum ...)
```

```
M. Shaposhnikov et al
```

HEPD Council Session, PNPI, Dec. 25, 2014 "Higgs boson at LHC" Victor T. Kim