

1

PANDA experiment and PNPI in PANDA

Antiproton proton collision @ 1.5-15 GeV HESR

- PANDA physics
- Status of FAIR/ HESR/PANDA
- PNPI Forward TOF with 80ps resolution
- FTOF TDR
- Preassembly at COSY
- PNPI involvement in PANDA

PANDA Physics

$\overline{P}P \rightarrow \overline{C}C$

Charmonium Spectroscopy.

Measurement of masses and width of charmonium states with unprecedented precision of 100kV

 $\overline{P}P \rightarrow \overline{C}Cg$ (hybrids)

Search for Gluonic Excitations.

objects with exotic quantum numbers J^{PC}

X, Y, and Z (like) states, pure glue, multiquark states

 $PP \rightarrow e^-e^+$

Electromagnetic Processes.

proton form factors in the time-like region up to $S=14 (GeV/c)^2$

$\overline{P}P \rightarrow \overline{\Lambda} \Lambda, \Xi \Lambda, \overline{\Omega} \Omega, \overline{\Lambda}_{c} \Lambda_{c},, \overline{\Omega}_{c} \Omega_{c}$

Hyperon biner reactions. Production cross section and mechanism, polarization *Hypernuclei* with more than one strange hadrons.

e⁺e⁻ colliders

1⁻⁻ states only !! X(4008)? Belle Y(4260) BaBar, Belle, Cleo Y(4350) BaBar, Belle Y(4660) Belle

Accelerator facilities and experiemnts @GSI

FAIR Facility for Antiproton and Ion Research

HESR ANTI PROTONS

Momentum range 1.5 - 8.9 GevL= 2x10³¹ cm⁻²s⁻¹ $\Delta p/p=5x10^{-5}$!!! Momentum range 1.5 - 15 GeVL= 2x10³² cm⁻²s⁻¹ $\Delta p/p=5x10^{-4}$

PANDA detector

- 100 KeV mass resolution by beam momentum scan
- □1% produced particle momentum resolution
- □ 2x10⁷ s⁻¹ event rate capability

□stand 10³² cm⁻² s⁻¹ inst. luminosity

 $\Box nearly 4\pi acceptance, high detection efficiency$

Secondary vertex reconstruction for D, K^0_{S} , Λ (c τ = 317 µm for D[±])

□PID (γ, e, μ, π, K, p)

□photon detection 1 MeV – 10 GeV

Figure 2.1: Artistic view of the $\overline{P}ANDA$ Detector Targets: pellet H(D) target

frozen drops of 25-40µm, controlled position; Target station for hyper-nucleus physics; Wire targets for pbar-A interaction He3 polarized target (under design)

Total integrated luminosity about 1.5 fb-1/year

FAIR Combined Schedule (EM 20.10.2014)

Combined Schedule (Civil Construction Variant 1-2-4-5-3-6)

End of Civil ConstructionQ3 2019PANDA start installationQ4 2019PANDA beam testsQ3 2020

Forward Time-Of-Flight PNPI Commitment

Bicron 408

(recommended for large TOF counters) **Rise time** $0.9 \,\mathrm{ns}$ Decay time 2.1 ns 1/e light attenuation length 210cm Wavelength of max emission 425nm

Fast PMTs (hamamtsu) R4998 1" (R9800), R2083 2" (R9779) Anode pulse rise time 0.7-1.8ns TTS 250-370ps (FWHM) Gain $1.1-5.7 \times 10^{6}$

W.m. emission

HV

420nm 1500-3500v

Light guides

Monte Carlo Study with PANDAROOT

PMT timing resolution at PNPI test station

Results of measurements TDC spectrum amplitude corrected

R4998-R4998	σ= 72 ps
R2083-R2083	σ= 70 ps
R4998-R9800	σ= 86 ps
R2083-R9779	σ= 64 ps
R4998	σ= 48 ps
R9800	σ= 67 ps
R2083	σ= 43 ps
R9779	σ= 40 ps

$\sigma_{\text{electronics}} = 25$	-30	ps
$\sigma_{\text{geometry}} = 10$ -	12	ps

Hamamatsu PMT	Rise time, ps	TTS sigma, ps	Gain 10 ⁶	Appl. Voltage kV
R4998(1")	0.7	160	5,7	2.25
R9800(1")	1.	270	1.	1.3
R2083(2")	0.7	370	2.5	3.
R9779(2")	1.8	250	0.5	1.5

SiPM timing resolution at PNPI test station

Prototyping using PNPI and COSY proton beams

S1 S2 S3 S4 coincidences

Small counters: S1, S2 BC-408 2x2x2 cm³

1 GeV extracted proton beam

pp elastic scattering: $E_p=730 \text{ MeV}$ at $\Theta_p=26.0 \text{ deg}$.

 $E_p=920 \text{ MeV}$ at $\Theta_p=20.0 \text{ deg}$. $E_p=920 \text{ MeV}$ at $\Theta_p=13.5 \text{ deg}$.

2 GeV COSY test beam

scattered proton energy uncertainty $\sigma(Ep)=5$ MeV hit position uncertainty $\sigma(x)=1$ mm -> 5 ps

Summary for prototyping from tests using proton beam

Scintillation slab dimensions	Photo multiplier tube	Comments
140 cm × 10 cm × 2.5 cm	Hamamatsu R 2083	Accepted as a prototype for the FTOF wall
140 cm × 5 cm × 2.5 cm	Hamamatsu R 4998	70ps Accepted as a prototype for the FTOF wall
140 cm × 2.5 cm × 2.5 cm	Hamamatsu R 4998	60ps Variant of a prototype with smaller slab width
140 cm × 10 cm × 1.5 cm	Hamamatsu R2083	150ps Projected originally for the FTOF wall
140 cm × 5 cm × 1.5 cm	Hamamatsu R4998	120ps Projected originally for the FTOF wall
140 cm × 2.5 cm × 2.5 cm	Electron PMT 187	80ps Magnetic field protected, tentatively projected for the dipole TOF
100 cm × 10 cm × 2.5 cm	Electron PMT 187	150ps Magnetic field protected, tentatively projected for the dipole TOF

Weighted means of σ (TDC3-TDC1) and σ (TDC3-TDC1):

•

$$1/\sigma^2 = 1/\sigma_3^2 + 1/\sigma_4^2$$

TDC spectra corrected for pulse amplitude spread and hit position. 12

Test facility for FAIR

ÜLICH

ПИЯФ в эксперименте ПАНДА

<u>Состав</u> группы

С.Белостоцкий Д.Веретенников А.Жданов А.Изотов О.Миклухо Ю.Нарышкин А.Прокофьев С.Манаенков Г. Гаврилов

FTE ~ 0.6

Frontend readout/DAQ эксперт ?

Инженер-конструктор?

Студенты/аспиранты/ молодые специалисты ?

Supporting slides

Forward Time-Of-Flight wall FTOF wall

Technical Design Report (TDR)

Petersburg Nuclear Physics Institute

Table of content

1. EXECUTIVE SUMMARY	100%
2. PHYSICS CASE OF FTOF, MC STUDY	90%
3. TECHNICAL DESIGN CONSIDERATIONS	
OF FTOF	50%
4, EXPERIMENTAL STUDY OF PROTOTYPES	100%
5. MECHANICS, CABLING AND INTEGRATION	30%
6. PROJECT MANAGEMENT	50%
7. CONCLUSION	50%

Timing resolution using proton beams

PNPI synchrocyclotron, 740 and 920 MeV April 2009. Nov. 2012 June 2013 Dec. 2013 COSY test beam in Juelich, 2 GeV Dec. 2012

Tasks: optimization of slab thickness and width; time resolution versus hit position; count rate scan; tests with TRB-2, TRB-3 readout;

There is a semiciration counters tested at proton semins			
Scintillator dimensions:	Photomultiplier		
thickness x width x length, cm^3 BC408			
1.5 x 5 x 140	Hamamatsu PMT R4998 (both ends)		
1.5 x 10 x 140	Hamamatsu PMT R2083 (both ends)		
2.5 x 2.5 x 140	Hamamatsu PMT R4998 (both ends)		
2.5 x .5 x 140	Hamamatsu PMT R4998 (both ends)		
2.5 x 10 x 140	Hamamatsu PMT R2083 (both ends)		
2.5 x 2.5 x 140	Electron PMT 187 (both ends)		
2.5 x 5 x 140	Electron PMT 187 and Hamamatsu R4998		
2.5 x 5 x 140	Electron PMT 187 (both ends)		
2.5 x 10 x 100	Electron PMT 187 (both ends)		
2.5 x 10 x 100	Electron PMT 187 and Hamamatsu R4998		

Table 1. Prototypes of scintillation counters tested at proton beams

Global plan for FTOF / DTOF design, fabrication and installation 2014-2018

1. TDR approval, fund agreement, manufa	ing, tender, cturing concept.	from 01.01.2014 to 31.05.2015	17 months
2.Material procureme final prototype to manufacturing all co detector pre-assemb	ent, manufacturing a ests, mponents, oly.	nd from 01.06.2015 to 31.03.2017	22 months
3.Shipment to FAIR: g inspection, approval shipment	ood inspection , test for installation,	from 01.04.2017 to 31.12.2017	9 months
4.Installation at HESR		from 01.01.2018 to 30.09.2018	9 months
5.Commisioning		from 01.10.2018 to 31.12.2018	3 3 months
M3 9/2014	M8 04/2016	M10 06/2017	M11 10/2018
	Prototype tested	Approval for	Ready for beam

installation

pre-series accepted

Approval of TDR

Cost estimation update

FTOF wall

Plastic scintillators

	27
PMTs $1^{\prime\prime}$ 600 \notin 40u. +5u.(spare)	21
PMTs, 2" 900€ 92u.+10u.(spare)	92
FEE+DAQ	30
HV power supply	22
Gain monitoring system	9
Supporting structure (design, fabrication)	40
Test stand for mass production	35
Transportation, custom expenses	25
	••••

340 k€

Dipole TOF

Plastic scintillators B408 20u.	15
PMTs Electr.187 1.5" 1400€ 40u. +5u.(spare)	63
FEE +DAQ	5
HV power supply	9
Gain monitoring system	5
Supporting structure (design, fabrication)	35 ??
••••••	• • • • • • • • • • • • • • • •
	132 k€

From RRB February 2014 471 k€

Infrastructure

- o PNPI test beam
- PNPI design department (mechanical components drawings)
- PNPY electronic department (expertise, HV)
- PNPI Workshop (fabrication of mechanical components)
- Test station/preassembly in Juelich

Efficiencies and count rates of charged hadrons

	Generated by DPM	Detected by BTOF (eff / N per sec)	Detected by DTOF (eff / N per sec)	Detected by FTOF (eff / N per sec)
π-	90693	$0.36 / 4.08 \cdot 10^{6}$	$0.01 / 0.14 \cdot 10^{6}$	$0.23 / 2.59 \cdot 10^{6}$
π+	90725	$0.44 \ / \ 5.03 \cdot 10^{6}$	$0.002 \ / \ 0.03 \cdot 10^{6}$	0.18 / $2.07 \cdot 10^{6}$
K -	3022	$0.09 \ / \ 0.03 \cdot 10^{6}$	0.001 / $0.0004 \cdot 10^{6}$	$0.26 / 0.1 \cdot 10^{6}$
K +	3082	$0.25 \ / \ 0.09 \cdot 10^{6}$	$0.003 \ / \ 0.001 \cdot 10^{6}$	$0.12 \ / \ 0.046 \cdot 10^6$
p-bar	42095	$0.007/ \ 0.04 \cdot 10^{6}$	$0.0002 \ / \ 0.001 \cdot 10^{6}$	$0.62 / 3.24 \cdot 10^{6}$
р	42003	$0.61 / 3.19 \cdot 10^{6}$	$0.002 / 0.012 \cdot 10^{6}$	0.07 / 0.35 · 10 ⁶

Tracks multiplicity distributions in coincidences

Lambdabar and Lambda Hyperon Event Selection

Corrections are based on strong dependence of time difference on pulse amplitude and hit position in the scintillator.

Correction function

$$t_{ik} = t_{ik}^{raw} - f^{corr} = t_{ik}^{raw} - Ax - B(\frac{1}{\sqrt{Q_i}} - \frac{1}{\sqrt{Q_k}}) - C,$$

A,B,C found by minimizing functional

$$\sum_{n=1}^{N} \left[t_{ik} \right]_{n}^{2} = \sum_{n=1}^{N} \left[t_{ik}^{raw} - f^{corr} \left(A, B, C, x, Q_{i}Q_{k} \right) \right]_{n}^{2},$$

Example at 920 MeV

Slab 2,5x5x140 PMT R4998

- No corrections, $\Delta x=15 \text{ mm}$ $\sigma = 126 \text{ ps}$
 - Only amplitude correction
- Both hit position (σ_X = 1mm) and amplitude corrections

σ= 106 ps

σ= 88 ps₂₃

Timing resolution vs hit position

FTOF wall mechanics.

FTOF wall front view

Scintillation counter mechanical components

Summary on work package 2014

TDR

• Complete on-beam tests with TRB-3 readout

R&D

- 90Sr tests of Hamamtsu R9800, R9779 PMTs
- Determine finally type of divider(active/passive)
- Complete study of PM-187 in strong magnetic field
- drawings of mechanical items
- work out cable routing scheme
- first test of KETEK SiPM

Monte Carlo simulation In PANDAROOT Framework

- Startless TOF algorithm
- Enhance study of count hadron rates and background
- Coincidence FTOF wall, BTOF and DTOF
- Study of inclusive $\overline{p} + p \rightarrow \overline{\Lambda} + X$, $\overline{p} + p \rightarrow \Lambda + X$ reactions
- Study of $\Lambda_{\rm C}$ production
- Light propagation in slab, PMT, full digitization

one module & qualified help needed (2015)

done done done done in progress (2014) first results obtained (2015)

in progress (2015)

postponed (2015) done done not done (2015) started (2015)

The High Energy Storage Ring HESR

designed by a consortium between FZ Jülich, TSL Uppsala, GSI

M. Steck. FAIR-GSI Antiproton Source Meeting. Ferrara. 15-16 December 2006

Dipole TOF positioned inside the dipole magnet gap as

planned for TDR

Projected 2x10 scintillation slabs 80÷100x10x2.5cm readout from each end with Electron PMT 187

Diameter	30mm
Photocathode	20mm
Anode pulse rise time	1.4ns
TTS	≈500ps
Gain	5x10 ⁵
W.m. emission	380nm
(80%	at 420nm)
HV	1800v

tested in magnetic field up to 0.5T

Alternative solution SiPMs provided timing resolution better than 100ps

radiation hardness??

Not sensitive to mag. F.(!)

SiPMs(hamamatsu) S10931-50p, S10931-100p

active area3x3mmPixels3600Gain $7.5x10^5 - 2.4x10^6$ W.m. emission440nmTTS0.5-0.6ns(FWHM)

Generated Lambda hyperons

SiPM Radiation Hardness Test @ 1GeV PNPI Proton Beam.

- The absolute beam intensity was determined in a standard way by measuring induced radioactivity of irradiated aluminum foils.
- The beam intensity during the tests was varied in the range 1.3 2.1x10⁸ cm⁻²s⁻¹.
- The SiPM sample was not powered!
- Radiation was exposed in 10 successive periods about 10 minutes each. The integrated number of protons passing through the sensitive surface of the SiPM sample with the cross-section of 3x3 mm² was 0.9*10¹¹SiPM parameters (dark noise, amplitude and time characteristics for different values of high voltage) were measured before and after the radiation test using test station with ⁹⁰Sr electron source.

U,V	Ι, μΑ	A, mV	Noise	Noise+ ⁹⁰ Sr
72.06	0.15	40	1550	8700
72.53	0.30	80	4230	18500
72.06	81.0	4	2800	6200
72.53	113.0	6	99000	102000

As it is seen from the table the SiPM was practically killed by this dose the value of which can be taken as upper limit,

- Yet it is important to find out at which dose the sample start malfunctioning,
- It is also important to compare irradiation effect on unpowered and powered samples,
- All this will constitute our experimental program with SiPM samples.

$\Delta T = 0.056 C^{\circ}$ this is not heat!

SiPM's @ OLYMPUS. DESY TB22.

- •Both side-mounting and corner-mounting, counters have similar yields,
- •Blind spots exist in both configurations,
- Side-mounting is easier,
- Trigger scan shows, that even one SiPM is enough with proper threshold

Counters:8mm/2SiPM's, 4mm/2SiPM's (corners), 4mm/2SiPM's (sides), Readout: 25x preamp (electronics workshop, KPH Mainz)

- •QDC spectra to see light yield,
- •QDC spectra with prescaled baseline triger mixed into determine gain for each spectrum,
- Triple coincidence from beam trigger finger conciliators (2 with PMT's, 1 with SiPM)
- Quadruple coincidence (3 PMT's, 1 SiPM and single SiPM
 - •efficiency scan,
 - maximum efficiency reachable with single SiPM

FTOF wall and barrel TOF multiplicities

 $0.14 \times 10^6 \ \overline{pp}$ interactions generated

No dedicated start counter !

Generated/detected with FTOF wall

Generated/detected with FTOF wall

34

Decay length and m_x for Lambda-bar

 $p + p \rightarrow \Lambda + X$

Selection of inclusive Λ and anti Λ $\overline{p} + p \rightarrow \overline{\Lambda} + X$ $\overline{p} + p \rightarrow \Lambda + X$ $\overline{\Lambda} \rightarrow \overline{p} + \pi^+$ $\Lambda \rightarrow p + \pi^-$ Selection criteria

- pair of hadrons detected with the FTOF wall
- hadrons in a pair are of opposite charge: H^+H^-
- invariant mass calculated under assumption

 $m(H^-) = m_p \quad m(H^+) = m_\pi \quad for \quad \overline{\Lambda} \quad m(H^-) = m_\pi \quad m(H^+) = m_p \quad for \quad \Lambda$

- time-of-flight from decay vertex to FTOF calculated $t = t_c \sqrt{\frac{m^2}{p^2} + 1} \quad t_c = \frac{L}{c} \quad |t(H^+) - t(H^-)| < 100 \, ps$
- Kinematic criterion

 $p(H^{-}) > p(H^{+})$ for $\overline{\Lambda}$ $p(H^{-}) < p(H^{+})$ for Λ

$p + p \rightarrow \Lambda + X$

Pairs of hadrons with opposite charge and calculated Δt start <100 ps

Pairs of hadrons with opposite charge and calculated Δt_{start} <100 ps and z_2 >0.066 cm

FTOF wall and barrel TOF multiplicities

 $0.14 \times 10^6 \ pp$ interactions generated

N tracks per event

- Good separation of hadrons up to 3-5 GeV
- Good event start reference in combination with FRICH at higher momenta

Detection Efficiency of FTOF

 $0.72 \times 10^6 \ pp$ interactions @10 GeV, $\frac{\sigma p}{p} = 0.01$, $\sigma TOF = 50 \ ps$

acceptance of FS $\pm 10 \deg$. hor. $\pm 5 \deg$. ver. $\rightarrow \Omega_{FS} = 0.09 sr$

		Generated by DPM	Detected by FTOF wall	detection efficiency
	π^-	880346	172188	0.195
Both proton and pion	π^+	877255	150440	0,171
	K^-	30179	5820	0.192
	K^+	26811	2863	0.107
	\overline{p}	453293	202174	0.446
	p	398323	51241	0.129
	$\overline{\Lambda} \rightarrow \overline{p} + \pi^+$	19874	3840	0.193
detected	$\Lambda \to p + \pi^-$	19518	≈100	$\approx 5 \cdot 10^{-3}$
with FTOF				

Funding Modules 0-3

Contracting Party	Contribution (in 2005 M€)	
Finland	5.00	
France	27.00	
Germany	705.00	
India	36.00	
Poland	23.74	
Romania	11.87	
Russia	178.05	
Slovenia	12.00	
Sweden	10.00	
Total	1.008,66	

- International endeavour
- All numbers in 2005 € escalation until 2018 ca. +50%
 i.e. about €1.6 billion
- Most contributions in-kind

$p + p \rightarrow h + h$ **Binary reactions** h = hyperons : $\Lambda, \Sigma, ... \Omega_{C}$ h = mesons : ... D...6,00 -5,75 $\Omega_{\rm Cbar}\Omega_{\rm C}$ 5,50 5,25 5,00 4,75 $\Lambda_{\rm Cbar}\Lambda_{\rm C}$ 4,50 4,25

