HERMES and OLYMPUS experiments

STUDY OF NUCLEON (HADRON) STRUCTURE USING ELECTRON BEAMS AT DESY

HERMES data taking period 1995-2007, data analysis OLYMPUS data taking 2012, data analysis

С. Белостоцкий Сессия УС ОФВЭ 2014

HERMES. Study of inclusive, semi inclusive and photo production reactions Using 27.6 GeV longitudinally polarized positron (electron) beam incident On polarized H or D target, or unpolarized nuclei target

Summary of HERMES data taking				Most important results
<u>Ран I.</u> 1995-2000 годы, поляризация пучка Р _В =51%	<u>Продольно-</u> поляризованные <u>мишени</u> H,D,He3 Р_Т≈80% <u>Неполяризованные</u> <u>мишени</u> H, D, ³ He, ⁴ He, ¹⁴ N, ²⁰ Ne, ⁸⁴ Kr	<u>Интегральная</u> <u>светимость</u> 259 pb ⁻¹ 619 pb ⁻¹	<u>Число неупруго- рассеянных</u> электронов с Q ² >1 <u>GeV² (DIS)</u> 11.8*10⁶ 27.9*10⁶	 Spin crisis DIS inclusive ΔΣ = 0.33±0.02_{exp}±0.03_{theo} Spin crisis DIS semi- inclusive ΔΣ = 0.359±0.026_{exp}±0.018_{theo} Estimation of gluon polarization
2001-2002 годы модернизация коллайдера ГЕРА				$\frac{\Delta g(x)}{g(x)} = 0.049 \pm 0.034_{stat} \pm 0.010_{sys}$
<u>Ран II.</u> 2002-2007 годы, поляризация пучка P_B=36% <u>Детектор отдачи</u> 2006-2007 годы	<u>Поперечно-</u> поляризованная <u>мишень</u> Н Р_Т≈80% <u>Неполяризованные</u> <u>мишени</u> H, D, ³ He, ⁴ He, ¹⁴ N, ²⁰ Ne, ⁸⁴ Kr	150 pb ⁻¹ 2180 pb ⁻¹	7.44*10 ⁶ 98.2*10 ⁶	 First measurement of Sivers DF and Collins FF Detailed study of GPDs

Transverse (spontaneous) polarization of Λ and anti Λ ^{C.Б.}

Results

Phys. Rev. D90 (2014) 7, 072007 Phys. Rev. D76 (2007) 092008

Ю.Н. С.Б. К.R.

Spin transfer to Λ in polarized DIS C.E.

$$\vec{e} + p \rightarrow e' + \vec{\Lambda} + X \quad P_{\Lambda} \sim D_{LL'}^{\Lambda} \cdot P_{beam}$$

In LO QCD

 $D_{LL,f}^{\Lambda}$ is strongly related to Λ spin structure i.e, $D_{LL,f}^{\Lambda}$ is a measure of poorly known u,d-quark polarization in Λ

 Λ spin structure Naïve CQM $\Delta u = \Delta d = 0$ $\Lambda\Sigma=1$ $\Delta s = 1$ SU(3)_f S.B. using HERMES $\Delta\Sigma = 0.32$ Δu=Δd= -0.16 Δs= 0.64 Lattice-QCD $\Delta u = \Delta d = -0.02$ $\Delta s = 0.68$ (±0.04) $\frac{\Delta F_{u}^{\Lambda}}{F^{\Lambda}} \sim \Delta_{u} \quad \frac{\Delta F_{s}^{\Lambda}}{F^{\Lambda}} \sim \Delta_{s}$ **Expectation** $D_{LL}^{\Lambda} \approx D_{LL,n}^{\Lambda} \leq 0$

С.Б. Д.В.

HERMES spin transfer and world data

Phys.Rev. D64 (2001) 112005

Электророждение векторных мезонов

OLYMPUS motivation Proton form factor problem

$$\frac{\mathbf{d}\sigma}{\mathbf{d}\Omega} = \frac{\mathbf{d}\sigma}{\mathbf{d}\Omega}_{\text{Mott}} \frac{1}{\varepsilon(1+\tau)} \Big[\varepsilon \mathbf{G}_{\mathbf{E}}^2(\mathbf{Q}^2) + \tau \mathbf{G}_{\mathbf{M}}^2(\mathbf{Q}^2) \Big], \quad \tau = \frac{\mathbf{Q}^2}{4\mathbf{M}_{\mathbf{p}}},$$
photon polarization $\varepsilon = \frac{1}{1+2(1+\tau)\tan^2(\theta_{\mathbf{e}}/2)}, \quad 0 < \varepsilon < 1.$

OLYMPUS experiment at DORIS 2 GeV e⁺ / e⁻ beams

Proposed explanation contribution TPE

$$\frac{\sigma^{e^+p}}{\sigma^{e^-p}} = 1 + TPE + \dots$$
$$TPE = 4 \frac{\text{Re} M^*_{2\gamma}(Q^2)}{M(Q^2)_{Born}}$$

К.С. Д.В. С.Б.

Data analysis. Double ratio

12 deg. telescope counts

	Lumi, fb ⁻¹	$\sigma_{\scriptscriptstyle MC}$, nB	σ_{MC} left, nB	$\sigma_{\!MC}$ right, nB	Tot. stat.
e ⁻ , B ⁻	0.24	18.42	8.98	9.44	~4.4 M
e ⁻ , <mark>B⁺</mark>	1 <mark>.9</mark> 3	11.89	5.86	6.02	~23 M
e+,B-	0.32	12.07	5.94	6.13	~ 3.8 M
e ⁺ , B ⁺	1.96	18.13	8.79	9.33	~ 35 M

BACKUP SLIDES

<u>A photoproduction mechanism by PYTHIA</u>

$$\langle \boldsymbol{E}_{\gamma} \rangle = \langle \boldsymbol{E}_{\boldsymbol{e}} - \boldsymbol{E}_{\boldsymbol{e}'} \rangle \simeq 15.6 \; \boldsymbol{GeV}$$

<u>Longitudinal and transverse</u> <u>spin transfer world data for $\overline{\Lambda}$ </u>

 Λ and other hyperon spin structure still poorly established

SU(6) spin-1/2 hyperon octet ΔΣ=0.32 F=0.47 D=0.81

	∆u	Δd	Δs
p(uud)	0.84	-0.43	-0.09
n(udd)	-0.43	0.84	-0.09
Λ(uds)	-0.16	-0.16	0.64
$\Sigma^+(uus)$	0.84	-0.09	-0.43
$\Sigma^0(uds)$	0.375	0.375	-0.43
$\Sigma^{-}(dds)$	-0.09	0.84	-0.43
Ξ ⁰ (uss)	-0.43	-0.09	0.84
Ξ ⁻ (dss)	-0.09	-0.43	0.84

Λ spin structure

Naïve CQM $\Delta \Sigma = 1$ $\Delta u = \Delta d = 0$ $\Delta s = 1$

Jaffe assumption ($\Delta s_{proton}=0$)

ΔΣ=**0.586** Δu=Δd= -**0.073** Δs= **0.732**

Burkard & Jaffe from EMC result

 $\Delta\Sigma = 0.12 \quad \Delta u = \Delta d = -0.23 \quad \Delta s = 0.58 \quad (\pm 0.04)$

Lattice-QCD $\Delta u = \Delta d = -0.02$

 $\Delta u = \Delta d = -0.02$ $\Delta s = 0.68$ (±0.04)

DSPIN 2012

Longitudinal spin-transfer to Λ- hyperon

Phys Rev. D 2006

$$P_{L'}^{A} = P_{b}D(y)D_{LL'}^{A}$$

$$D_{LL'}^{A}(z) = \sum_{q} \tilde{P}_{q}(z) \cdot D_{LL'q}^{A}(z)$$

$$\tilde{P}_{q}(z) = \int \tilde{P}_{q}(x,z)dx$$

$$D_{LL'q}^{A}(z) = \frac{FF_{q}^{A\uparrow}(z) - FF_{q}^{A\downarrow}(z)}{FF_{q}^{A\uparrow}(z) + FF_{q}^{A\downarrow}(z)}$$
Partial spin - transfer

Due to strong u-dominance

$$D_{LL'}^{\Lambda} \approx \frac{\Delta u^{\Lambda}}{u^{\Lambda}}$$

<u> Λ and $\overline{\Lambda}$ events selection</u>

<u>h⁺h⁻ pair background suppression</u>

leading π or K rejection using threshold Cherenkov det. (1996-1997) or RICH (1998-2007)

vertex separation cut: distance between V₁ *and* V2 *vertices* > 5 *cm*

DSPIN 2012

Extraction of spin transfer components

$$\begin{aligned} \frac{dN}{d\Omega_{p}} &= \frac{dN_{0}}{d\Omega_{p}} (1 + \alpha \overline{P}^{\Lambda} \cdot \hat{k}_{p}) = \frac{dN_{0}}{d\Omega_{p}} (1 + \alpha_{\Lambda} P_{B} \sum_{i=x,y,z} D_{Li}^{\Lambda} \cos \theta_{i}) \\ \alpha_{\Lambda \rightarrow p + \pi^{*}} &= 0.642 \pm 0.013 \quad \alpha_{\overline{\Lambda} \rightarrow \overline{p} + \pi^{*}} = -0.642 \pm 0.013 \\ \hline \alpha_{\Lambda \rightarrow p + \pi^{*}} &= 0.642 \pm 0.013 \quad \alpha_{\overline{\Lambda} \rightarrow \overline{p} + \pi^{*}} = -0.642 \pm 0.013 \\ \hline \text{For beam helicity balance case} \qquad \begin{bmatrix} P_{B}^{2} \end{bmatrix} = \frac{\int P^{2}(t)L(t)dt}{\int L(t)dt} = 0 \\ \hline \text{MC simulation of spectrometer acceptance} \\ is not needed as in this case acceptance \\ correction does not affect measured \\ asymmetries. D_{Li} \text{ components are extracted} \\ using experimental data sample only \\ \text{without any MC inputs } !! \\ \sum_{k=x,y,z} D_{1k}A_{ik} = \frac{1}{\pi} \frac{B_{i}}{\left[P_{B}^{2} \right]} \ i = x, y, z \\ B_{i} = \frac{1}{N^{\Lambda}} \sum_{v=1}^{N^{\Lambda}} (P_{B}D(y)\cos\theta_{i})_{v} \end{aligned}$$

DSPIN 2012

Hardware:

Жагнит спектрометра (раразработка концепции, организация производства, частично инвестирование, магнитные измерения карты поля);

- Пропорцианальные камеры (11тыс.каналов) в зазоре магнита;
- Инвестирование (частично) системы считывания PCOS-4;
- > Автоматизированная система охлаждения для frontend PCOS-4 и TRD;
- > Система охлаждения для силикон-стрип детектора Lambda Wheels;

<u>Software</u>

Разработка программ кодирования события HERMES Decoding;
 Разработка программы улучшенного трекинга HERMES TC;
 Производство файлов данных HERMES HRC /DST files;
 Программа выстройки элементов детектора по трекам, и пр.

≻Разработка программ SLOW CONTROL;

DATA TAKING

Поддержание MCs, TRD;
Поддержание силикон.-стрип дет. LW;
Поддержание DAQ;
Газообеспечение;
Поддержание Slow Control;
Обработка сырых данных;
Работа в качестве период координатора;

DATA ANALYSIS

