

ATLAS эксперимент

T

TR

Научная сессия ученого совета ОФВЭ ПИЯФ 24-27 декабря 2012 года Олег Федин

Содержание

- Status of the ATLAS detector.
- Performance of the ATLAS detector:
 - to highlight the PNPI's participation for the further improvement and control of the ATLAS performance.
- PNPI participation in ATLAS:
 - physics program;
 - detector development;
 - TDAQ/DCS.
- PNPI plans for ATLAS upgrade.

p-p integrated luminosity vs time

Multiple pp-collisions per bunch crossing

The BIG challenge in 2012: PILE-UP

 $M = L_{bunch} S_{inel} / f_r$

Detectors operation

<

Data-taking efficiency = (recorded lumi)/(delivered lumi): 93.7% (2011 -93.5%)

Fraction of non-operational detector channels: (depends on the sub-detector) few permil to 3.5%

Subdetector	Number of Channels	Approximate Operational I	Fraction
Pixels	80 M	95.0%	
SCT Silicon Strips	6.3 M	99.3%	RT
TRT Transition Radiation Tracker	350 k	97.5% 9	7.5%
LAr EM Calorimeter	170 k	99.9%	
Tile calorimeter	9800	98.3%	
Hadronic endcap LAr calorimeter	5600	99.6%	
Forward LAr calorimeter	3500	99.8%	
LVL1 Calo trigger	7160	100%	
LVL1 Muon RPC trigger	370 k	100%	
LVL1 Muon TGC trigger	320 k	100%	
MDT Muon Drift Tubes	350 k	99.7%	
CSC Cathode Strip Chambers	31 k	96.0%	
RPC Barrel Muon Chambers	370 k	97.1%	
TGC Endcap Muon Chambers	320 k	98.2%	

Good-quality data fraction, used for analysis : (depends on the analysis) : 90-96%

ATLAS p-p run: April-Sept. 2012

Inner Tracker Cal		Calori	orimeters Muon Spectrometer			Magnets				
Pixel	SCT	TRT	LAr	Tile	MDT	RPC	CSC	TGC	Solenoid	Toroid
100	99.3	99.5	97.0	99.6	99.9	99.8	99.9	99.9	99.7	99.2

All good for physics: 93.7%

Luminosity weighted relative detector uptime and good quality data delivery during 2012 stable beams in pp collisions at Vs=8 TeV between April 4th and September 17th (in %) – corresponding to 14.0 fb⁻¹ of recorded data. The inefficiencies in the LAr calorimeter will partially be recovered in the future.

Trigger operation

- Optimization of selections (e.g. object isolation) to maintain low un-prescaled thresholds (e.g. for inclusive leptons) in spite of x2 higher luminosity and pile-up than in 2011
- Pile-up robust algorithms developed (~flat performance vs pile-up, minimize CPU usage, ...)
- Results from 2012 operation show trigger is coping very well (in terms of rates, efficiencies, robustness, ..) with harsh conditions while meeting physics requirements

Electrons

Electrons

High efficiency for low-p_T electrons (affected by material) crucial for $H \rightarrow 4e$, 2µ2e

Improved track reconstruction and fitting to recover e[±] undergoing hard Brem \rightarrow achieved ~ 98% reconstruction efficiency, flatter vs η and E_T

Re-optimized e[±] identification using pile-up robust variables (e.g. Transition Radiation, calorimeter strips) → achieved ~ 95% identification efficiency, ~ flat vs pile-up; higher rejections of fakes

Results are from Z \rightarrow ee data and MC tag-and-probe

24-27 декабря 2012

Electrons

PNPI contribution: A measurement of the electron identification efficiency using $Y \rightarrow \mathbb{M} \cong \mathbb{M} \cong \mathbb{M}$ decays by tag&probe method. Work is supported by RFBR grant in 2012-2013

 Special trigger was developed to register decays of the Y→M = M = 2 legs L1 EM clusters, one high-pT (E_T>16 GeV), one at low pT (E_T>6 GeV), tight ID for high pT cluster and no requirement for track matched to low pT cluster, invariant mass of two electrons between 6 and 20 GeV.

- For the tag electrons applied tight ID selection.
- Efficiency of probe electrons measured in the data and MC.
- Scale Factors defined as $\,\epsilon_{date}^{}/\epsilon_{MC}^{}$ and used to correct MC prediction

Photon

Научная сессия ученого совета ОФВЭ ПИЯФ

Muons

Reconstruction efficiency ~ 97%, ~ flat down to $p_T \sim 6$ GeV and over $|\eta| \sim 2.7$

Missing E_T

Understanding of E_t^{miss} (most sensitive to pile-up) is crucial for $H \rightarrow WW^{(*)} \rightarrow IvIv$, $W/ZH \rightarrow W/Zbb$, $H \rightarrow \tau\tau$

Search for high-mass resonances decaying to dileptons

- No statistically significant excess above the Standard Model expectation is observed;
- Upper limits are set at the 95% CL on the cross section times branching fraction of Z resonances decaying into $\ell + \ell$ pairs as a function of the resonance mass.
- As a result, Z bosons of the Sequential Standard Model with masses less than 2.47 TeV are excluded at 95% CL.
- Z* bosons with masses less than 2.20 TeV are excluded at 95% CL (only 2011 data)

Several models predict new resonances decaying to pairs of charged leptons or into lepton:
Spin-1 benchmarks: Z' in Sequential Standard Model or E6 grand unified symmetry
Spin-2 benchmark: Graviton in Randall-Sundrum models
Chiral spin-1 bosons (M.V.Chizov Phys. Atom. Nucl. 71, 2096 (2008))

Expect very high-pT electrons from this signal

- E_T>25 GeV |n| < 2.47, excluding crack 1.37<|n| < 1.52</p>
- Cuts on shower shape and track matching
- A hit in the first layer of the pixel detector is required if to suppress background from photon conversions
- □ Higher E_T must be isolated requiring ΣE_T ($\Delta R < 0.2$) < 7 GeV to supress QCD background

Search for high-mass resonances decaying to lepton and neutrino

- No yet new limits are set in 2012 data.
- In 2011 data no statistically significant excess above the Standard Model expectation is observed;
- Upper limits are set at the 95% CL on the cross section times branching fraction of W' resonances decaying into $\ell + \ell$ pairs as a function of the resonance mass.
- As a result, W bosons of the Sequential Standard Model with masses less than 2.5 TeV are excluded at 95% CL.
- W* bosons with masses less than 2.38 TeV are excluded at 95% CL.

TRT eFastOR trigger

Ultrasonic vapour analyzer/flowmeter for the ATLAS silicon tracker

Sound velocity vs % concentration of C_3F_8/N_2 mixture

- The vapour flow rate is calculated from the sound transit times measured parallel, t_{down} , and anti-parallel, t_{up} , to the flow direction, according to the following algorithm: $c = L/2 * ((t_{up} + t_{down})/t_{up} * t_{down})$
- Mixture precision:
 - ~0.3% for C3F8/C2F6
 - $< 10^{-4}$ for N2/C3F8
- Flow resolutions of ± 2% F.S. for flows up to 250 l.min-1,
- ± 1.9% F.S. for linear flow velocities up to 15 ms⁻¹

View of the electronics for Utrasonic amalyzer installed in the ATLAS pit

Pixel Service Quarter Panels (SQP)

- Transfer services from outside world to pixel detectors
- Problematic opto-couplers on SQP
- To replace these need new infrastructure and electronics
- Mew electronics will allow greater readout bandwidth for > 10³⁴ operation
- PNPI technicians are participating in creation of the SQP

TDAQ/DCS

Отдел информационных технологий проф. Рябов Ю.Ф.

TDAQ PNPI contribution:

- Development and maintenance of the ATLAS data acquisition (TDAQ) system control and monitoring software at Point 1: system configuration, debugging, new features development.
- TDAQ s/w release validation, maintenance (patching), s/w installation at P1, maintenance of TDAQ online infrastructure.
- Development and deployment of a new automation tool "Shifter Assistant" used by TDAQ and ATLAS subdetectors at P1.
- Expert (level 1,2 on-call) support for the running system at P1.
- Shifts at P1: manning the Run Control desk.

TDAQ Shifter assistance

DCS PNPI contribution:

- Administering and Technical support of OS Windows on DCS PCs (> 100).
- Support and improvements of: –Rack Control system,
 - -DCS Access Control (including remote access),
 - -ATLAS LHC Communication Interface
 - -Interface to Condition Database,
 - -CANopen OPC server Front-end interface used by *all* LHC experiments.
- New development for LHC/ATLAS Upgrade –CANOpen OPC server in advanced standard OPC UA.
- DCS Expert on-call (7/7,24/24) ~25 weeks/year.

Plans for LHC Upgrade

ATLAS upgrade

Phase 0 Upgrade 2013-2014

New inner pixel layer (IBL) : *Possible new Diamond Beam Monitor (DBM)* Muon system completion New neutron shielding

Potential replacement of Minimum Bias Trigger scintillators

Phase I Upgrade 2018

New Muon small wheels

Improved Granularity of Calorimeter trigger at level 1 Trigger and Data Acquisition upgrades including Fast Track Trigger Under consideration: new pixel detector based on IBL experience

Phase II Upgrade 2022

All new Tracking Detector

New Trigger and Data Acquisition system including Calorimeter electronics upgrades

New detectors for parts of Muon system + more neutron shielding

Possible upgrades for Forward and Hadronic EndCap Calorimeters

New Muon Small Wheels

Back-up slides

The MC toy model for BEC

- The MC toy model for Bose-Einstein correlations (BEC) has been proposed to make a best choice from different reference distributions. It occurs that the deviation from the model values of the BEC parameters is provided by the reference sample which is being emulated from "observed" sample by the turn of all momenta vectors in the transverse plane by a random angle.
- In the case of the experimental data analysis the appropriate choice of the reference sample even more important.

- The ATLAS data on multi-particle production with the beam energy 2.76 TeV and 7.0 TeV analyzed with the selected reference samples.
- For the first time it is established that the radii of the particles radiation area is not dependent on the multiplicity, i.e. the value is saturated. The value of such radii has to be dependent on the beam energy. To make it more convincing, the data with a special trigger on high multiplicity has to be investigated with different beam energy. This is already done for the 2.76 TeV data. Such special sample is also collected with the beam energy 7 TeV. The analysis is under way.

TRT performance

TRT performance

(d/b) α d d/b) α x d d.25 Split tracks 🛨 Data, full ID - Data, Si only The TRT significantly improves the ·* Simulation, full ID momentum resolution compared to 0.15 tracks reconstructed with silicon hits only 0.1ATLAS Preliminary Cosmic '08 0.05 10 Events / 1 GeV 500 Data 2010 Ldt ≈ 42 pb⁻¹ $\sqrt{s} = 7 \text{ TeV}$ lnl<1.05 400 - MC Inner Detector - Fit 300 σ = (2.36 ± 0.07) Ge∀ Z mass resolution in the Inner 200 ATLAS Preliminary Detector shows good performance $\sigma \sim$ 2.36 GeV. 100 Good agreement data/MC . Q_{60} 90 100 110 M_{µµ} (GeV)

TRT

р_т [GeV]

 10^{2}

Preliminary HE-LHC - parameters

	nominal LHC	HE-LHC
beam energy [TeV]	7	16.5
dipole field [T]	8.33	20
dipole coil aperture [mm]	56	40-45
#bunches / beam	2808	1404
bunch population [10 ¹¹]	1.15	1.29
initial transverse normalized emittance	3.75	3.75 (x), 1.84 (y)
[µm]		
number of IPs contributing to tune shift	3	2
maximum total beam-beam tune shift	0.01	0.01
IP beta function [m]	0.55	1.0 (x), 0.43 (y)
full crossing angle [µrad]	285 (9.5 σ _{x,y})	175 (12 σ _{x0})
stored beam energy [MJ]	362	479
SR power per ring [kW]	3.6	62.3
longitudinal SR emittance damping time [h]	12.9	0.98
events per crossing	19	76
peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	1.0	2.0
beam lifetime [h]	46	13
integrated luminosity over 10 h [fb ⁻¹]	0.3	0.5

Target parameters for						
	HL-LHC run					
	Parameter	Nom.	Target	Target	LIU	
		25 ns	25 ns	50 ns	25 ns	50 ns
Efficiency is defined as the	N _b [10 ¹¹]	1.15	2.0	3.3	1.7	2.5
ratio between the annual	n _b	2808	2808	1404	2808	1404
luminosity target of 250	I [A]	0.56	1.02	0.84	0.86	0.64
fh ⁻¹ over the notential	θc [µrad]	300	475	445	480	430
luminosity that can be	β* [m]	0.55	0.15	0.15	0.15	0.15
reached with an ideal	$\epsilon_n [\mu m]$	3.75	2.5	2.0	2.5	2.0
reached with an ideal	$\epsilon_{s} [eV s]$	2.5	2.5	2.5	2.5	2.5
cycle run time with no	IBS h [h]	111	25	17	25	10
stop for 150 days: t _{run} =	IBS 1[h]	65	21	16	21	13
t _{lev} +t _{dec} +t _{turn} . The	Piwinski	0.68	2.5	2.5	2.56	2.56
turnaround time after a	F red.fact.	0.81	0.37	0.37	0.37	0.36
beam dump is taken as 5	b-b/IP[10 ⁻³]	3.1	3.9	5	3	5.6
hours, t _{decav} is 3 h while	L _{peak}	1	7.4	8.4	5.3	7.2
t _{lev} depends on the total	Crabbing	no 🕻	yes	yes	yes	yes
beam current	L _{peak virtual}	1	20	22.7	14.3	19.5
Search Carrent	Pileup L _{lev} =5L ₀	19	95	190	95	190
	Eff. [†] 150 days	=	0.62	0.61	0.66	0.67
			baseline			