What is the meaning of Higgs with M_H=125 GeV?

1. SM --- from electro-weak fits M_H=94 GeV (+29/-24) {<152 GeV at 95% CL}

--- electro-weak fit = we have 4 very precise numbers: \alpha^em=1/137, G_F, M_W, M_Z but only 3 parameters in SM: g, \Theta_W, M_Z

to fit this 4 precise numbers (plus other low energy data) we need something not too heavy (\sim 100 GeV) in radiative loop correction.

If SM – nothing new to "search" at the LHC (may be up to GUT scale)

but plenty interesting SM physics to study:

* gluon jets

* low x partons

* Pomeron-Pomeron interactions

* new hadrons (glueball, pentaquark)

* multiparton and secondary interactions

last TOTEM data are intriguing

(from 7 to 8 TeV sig_tot increases but the same slope B_el=(19.9 +/- 0.3) 1/GeV^2 ??)

SM – main problems:

- 1. (g_\mu 2) --- 3\sigma
- 2. Br_{exp}(H-->2\gamma)\sim 1.3Br_{SM}
- 3. !!!! neutrino sector !!!!

So SUSY is not excluded

N. Karagiannakis, G. Lazarides, C. Pallis arxiv:1212.0517

account for cold dark matter, B_s-->2\mu

tan(\beta)\sim 50

lightest superpartner M\sim 1 TeV M(stau)\sim 1 TeV M(H,A,H^{+/-}\sim 2 TeV

TABLE II: Input and output parameters, masses of the sparticles and Higgses and values of the low energy observables of our model in four cases (recall that 1 pb $\simeq 2.6 \times 10^{-9} \text{ GeV}^{-2}$).

Input Parameters										
$\tan \beta$	48	49	50	51						
$-A_0/M_{1/2}$	1.4	1.6	2	2.5						
$M_{1/2}/\text{TeV}$	2.27	2.411	2.824	2.808						
$m_0/{ m TeV}$	1.92	2.295	3.156	3.747						
Output Parameters										
$h_t/h_{ au}(M_{\rm GUT})$	1.117	1.079	1.038	1.008						
$h_b/h_{ au}(M_{ m GUT})$	0.623	0.618	0.613	0.607						
$h_t/h_b(M_{GUT})$	1.792	1.745	1.693	1.660						
μ/TeV	2.78	3.092	3.823	4.129						
$\Delta_{\hat{r}_{2}}(\%)$	1.43	0.93	0.1	0.17						
$\Delta_H(\%)$	3.08	1.30	0.11	1.76						
Masses in TeV of Sparticles and Higgses										
$\tilde{\chi}$	1.023	1.110	1.309	1.303						
$\tilde{\chi}_{2}^{0}$	1.952	2.117	2.489	2.481						
$\tilde{\chi}_{3}^{0}$	2.782	3.088	3.815	4.114						
$\tilde{\chi}_{4}^{0}$	2.785	3.091	3.817	4.116						
$\tilde{\chi}_1^{\pm}$	1.985	2.117	2.489	2.481						
$\tilde{\chi}_{2}^{\pm}$	2.785	3.091	3.817	4.116						
\tilde{g}	4.809	5.190	6.042	6.040						
\tilde{t}_1	3.806	4.097	4.761	4.781						
\tilde{t}_2	3.226	3.458	3.967	3.902						
\tilde{b}_1	3.838	4.141	4.853	4.947						
\tilde{b}_2	3.763	4.058	4.733	4.757						
\tilde{u}_L	4.687	5.138	6.186	6.483						
\tilde{u}_{R}	4.485	4.923	5.946	6.257						
\tilde{d}_L	4.687	5.138	6.187	6.483						
\tilde{d}_R	4.459	4.896	5.914	6.227						
$\tilde{\tau}_1$	2.082	2.347	2.979	3.293						
$\tilde{\tau}_2$	1.037	1.121	1.310	1.305						
$\tilde{\nu}_{\tau}$	2.075	2.342	2.975	3.289						
\tilde{e}_L	2.453	2.819	3.690	4.201						
\tilde{e}_R	2.112	2.476	3.339	3.901						
$\tilde{\nu}_c$	2.451	2.818	3.689	4.200						
h	0.1245	0.125	0.126	0.1265						
H	2.109	2.249	2.621	2.652						
H^{\pm}	2.111	2.251	2.623	2.654						
A	2.110	2.25	2.622	2.652						
Low	Energy (Observables	s							
$10^4 BR (b \rightarrow s\gamma)$	3.25	3.25	3.26	3.26						
$10^9 \mathrm{BR} \left(B_s \rightarrow \mu^+ \mu^- \right)$	4.17	4.15	3.98	4.17						
$R (B_u \rightarrow \tau \nu)$	0.975	0.977	0.982	0.982						
$10^{10} \delta a_{\mu}$	1.11	0.89	0.57	0.49						
$\Omega_{LSP}h^2$	0.11	0.11	0.11	0.11						
$\sigma_{\hat{\chi}p}^{\rm SI}/10^{-12}{\rm pb}$	6.17	4.55	2.44	1.75						
$\sigma_{\hat{\chi}p}^{\rm SD}/10^{-9} {\rm pb}$	1.69	1.08	0.43	0.28						

Light Higgs !

Betchle et al, arxiv 1211.1955

MSSM Higgs sector = h, H, A (m_h<m_H\sim m_A) usually h is close to SM Higgs BUT not excluded that H is similar to SM Higgs while m_h\sim 60 – 85 GeV but small coupling g^2 im 0.01 - 0.001

	LHC only		LHC+Tevatron		LHC+LEO			LHC+Tevatron+LEO				
Case	χ^2/ν	χ^2_{ν}	p	χ^2/ν	χ^2_{ν}	p	χ^2/ν	χ^2_{ν}	p	χ^2/ν	χ^2_{ν}	p
SM	27.6/34	0.81	0.77	31.0/37	0.84	0.74	41.6/39	1.07	0.36	45.3/42	1.08	0.34
h	23.3/28	0.83	0.72	26.8/31	0.86	0.68	26.7/33	0.81	0.77	30.4/36	0.84	0.73
H	26.0/28	0.93	0.57	33.1/31	1.07	0.37	35.5/33	1.08	0.35	42.4/36	1.18	0.21

Table 4: Global χ^2 results with ν degrees of freedom from the fits of the SM and the MSSM with either *h* or *H* as the LHC signal, the reduced $\chi^2_{\nu} \equiv \chi^2/\nu$, and the corresponding *p*-values. The number of degrees of freedom are evaluated naively as $\nu = n_{\rm obs} - n_{\rm param}$.