SHIPTRAP в 2012 г. ГСИ (Дармштадт)

Ю. Новиков (пияф)

Сессия Ученого Совета ОФВЭ ПИЯФ 24 декабря 2012 г.

1. Прямые измерения масс сверхтяжёлых элементов

M. Block et al., Nature 463, 785 (2010), M. Dworschak et al., Phys. Rev. C 81, 064312 (2010) E. Minaya Ramirez et al., Science 337, 1183 (2012)

$$\delta_{2n}(N,Z) = 2B(N,Z) - B(N-2,Z) - B(N+2,Z)$$

Enrique Minaya Ramirez et al., Science 337, 1183 (2012)

Экспериментально идентифицировано новое магическое число нейтронов N = 152 Ряд магических чисел: 2, 8, 20, 28, (40), 50, 126, (152)

E. Minaya Ramirez,...S.A. Eliseev, D.A. Nesterenko, Yu.N. Novikov et al. *Direct Mapping of Nuclear Shell Effects in the Heaviest Elements*. Science 337 (2012) pp.1207-1210.

2. Безнейтринный двойной захват электронов ядром

Безнейтринные бета-превращения

Двойной β распад ($\beta\beta$) Двойной е-захват (2EC)

Наблюдение безнейтринного процесса покажет, что:

• Иерархию масс нейтрино

Резонансный безнейтринный єє-захват

$$\lambda_{00\varepsilon\varepsilon}^{res} = c \cdot \left| M \right|^2 \cdot \left| \psi_{1e}(0) \cdot \psi_{2e}(0) \right|^2 m_v^2 \frac{\Gamma}{\left(Q_{\varepsilon\varepsilon} - B_i^{(1)} - B_j^{(2)} \right)^2 + \frac{1}{4} \Gamma^2}$$

Ю.Новиков-УС ОФВЭ-24.12.12

Схема экспериментальной установки на базе ионной ловушки SHIPTRAP (эксперимент С. Елисеева и др.)

Ю.Новиков- УС ОФВЭ-24.12.12

0⁺ → 0⁺ переходы между основными состояниями ядер

2ЕС-переход	Q(эксп.), keV	⊿ (эксп), keV	Т _{1/2} · m _{2EC} ², лет	
$^{152}\text{Gd} \rightarrow ^{152}\text{Sm}$	55.7(0.2)	0.91(0.18)	неск. единиц [.] 10 ²⁶ PRL 106, 052504 (2011)	$0^+ \rightarrow 0^+$
$^{164}\text{Er} \rightarrow ^{164}\text{Dy}$	25.07(0.12)	6.81(0.12)	10 ³⁰ PRL 107, 152501 (2011)	$0^+ \rightarrow 0^+$
$^{180}W \rightarrow ^{180}Hf$	143.1(0.2)	12.4(0.2)	неск. Единиц 10 ²⁷ Nucl. Phys., A 875 , 1 (2012)	0+ → 0+

Ю.Новиков-УС ОФВЭ-24.12.12

Двойной захват на возбуждённые состояния ядра

transition	E□/□keV	I_{f}^{\Box}	electron orbitals	Q□□keV	□/ˈkeV
96 Ru \rightarrow 96 Mo	2700.21(6)	2+	L_2L_2	2714.51(13)	9.05(14)
$^{74}\text{Se} \rightarrow ^{74}\text{Ge}$	1204.205(7)	2+	L ₂ L ₃	1209.169(49) 1209.240(7)	2.50(5) 2.57(1)
$^{106}Cd \rightarrow ^{106}Pd$	2748.2(4)	(2,3)	KL ₃	2775.39(10)	-0.33(41)
$^{112}\text{Sn} \rightarrow ^{112}\text{Cd}$	1871.00(19)	0+	KK	1919.82(16)	-4.50(25)
124 Xe $\rightarrow ^{124}$ Te	2790.41(9)	(0 ⁺ - 4 ⁺)	KK	2856.82(13)	1.96(16)
$^{130}\text{Ba} \rightarrow ^{130}\text{Xe}$	2544.43(8)	[0+]	KK	2623.71(26)	10.15(26)
$^{136}Ce \rightarrow ^{136}Ba$	2315.32(7)	0+	KK	2378.53(27)	-11.67(28)
$^{156}\text{Dy} \rightarrow ^{156}\text{Gd}$	1946.375(6) 1952.385(7) 1988.5(2) 2003.749(5)	1^{-} 0 ⁻ 0 ⁺ 2 ⁺	$\begin{array}{c} KL_1\\ KM_1\\ L_1L_1\\ M_1N_3\end{array}$	2005.95(10)	0.75(10) 1.37(10) 0.54(24) 0.04(10)
$^{162}\text{Er} \rightarrow ^{162}\text{Dy}$	1782.68(9)	2 +	KL ₃	1846.95(30)	2.69(30)
168 Yb $\rightarrow ^{168}$ Er	1403.7357(23)	(2) -	M_2M_2	1409.27(25)	1.52(25)
$^{184}\text{Os} \rightarrow ^{184}\text{W}$	1322.152(22)	0+	KK	1453.68(58)	-8.89(58)

Table 2. Transitions to nuclear excited states

Ю.Новиков – УС ОФВЭ 24.12.12

Изобарные цепочки с ββ и εε-процессами

Значения энергетической щели Δ для измеренных нуклидов на SHIPTRAP

Ю.Новиков-УС ОФВЭ-24.12.12

Периоды полураспада безнейтринного двойного захвата (m_v=1eV)

Горизонтальная линия- предел чувствительности действующих установок

Участники работы

S.A. Eliseev,^{1,6} K. Blaum,^{1, 2} M. Block,³ M.V. Goncharov, ^{1,8} C.Droese,⁴ F. Herfurth,³ H.-J. Kluge,^{2, 3} M.I. Krivoruchenko,⁵ D.A. Nesterenko,^{6,8} Yu.N. Novikov,⁶ E. Minaya Ramirez,^{3, 7} C. Roux,¹ V.M. Shabaev,⁸ F. [°]Simkovic,^{9, 10} L. Schweikhard,⁴ M. V. Smirnov, 6,8 I.I. Tupitsyn,⁸ K. Zuber,¹¹ and N.A. Zubova⁸

- 1 Max-Planck-Institut f[°]ur Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
- 2 Physikalisches Institut, Ruprecht-Karls-Universit^at, 69120 Heidelberg, Germany
- 3 GSI Helmholtzzentrum f^{*}ur Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany
- 4 Institut f'ur Physik, Ernst-Moritz-Arndt-Universit'at, 17487 Greifswald, Germany
- 5 Institute for Theoretical and Experimental Physics, Moscow, Russia
- 6 PNPI, Gatchina, 188300 St. Petersburg, Russia
- 7 Helmholtz-Institut Mainz, Johannes Gutenberg-Universit at, 55099 Mainz, Germany
- 8 Department of Physics, St. Petersburg State University, 198504 St. Petersburg, Russia
- 9 Joint Institute for Nuclear Research, Dubna, Russia
- 10 Department of Nuclear Physics and Biophysics, Comenius University, Bratislava, Slovakia
- 11 Institut fur Kern- und Teilchenphysik, Technische Universit¨at, 01069 Dresden, Germany

Thanks to K.. Blaum (MPIK) and M. Block (GSI) for collaboration, support and hospitality

<u>Публикации по проекту "SHIPTRAP" за 2012 г.</u>

(в числе авторов указаны только сотрудники ПИЯФ,

Only the PNPI-co-authors indicated)

- 1. S.A. Eliseev, Yu.N. Novikov et al. *Probing the nuclide* ¹⁸⁰W for neutrinoless double-electron capture exploration. Nucl. Phys. A 875 (2012) pp. 1-7.
- 2. S.A. Eliseev, Yu.N. Novikov et al. Search for resonant enhancement of neutrinoless double-electron capture by high-precision Penning-trap mass spectrometry. J.Phys. G 39, 124003 (2012).
- 3. D.A. Nesterenko, S.A. Eliseev, Yu.N. Novikov et al. *Double-beta transformations in isobaric triplets with mass numbers A=124, 130 and 136.* **Phys. Rev. C 86,** 044313 (2012).
- 4. S.A. Eliseev, D.A. Nesterenko, Yu.N. Novikov et al. *Direct Mapping of Nuclear Shell Effects in the Heaviest Elements*. Science 337 (2012) pp.1207-1210.
- 5. S.A. Eliseev, D.A. Nesterenko, Yu.N. Novikov. *High-precision mass* measurements of ^{203–207}Rn and ²¹³Ra with SHIPTRAP. Eur. Phys. J. A (2012).

Energy Spectrum for the 2 e⁻

Steve Elliott, FNAL Neutrino Summer School

Проекты поиска безнейтринного <u>двойного</u> <u>бета-распада</u> с чувствительностью ≈10²⁶ лет

1 Alexandre	CUORE	TeO ₂ Crystal bolometers	
C.	EXO	Liquid Xe TPC, daughter tag	
	GERDA	Bare Ge detectors in LN LAr	
Majorana	Majorana	Ge det. in traditional cryostat	
(inclusion)	MOON	Scint. sandwiching Mo foils	CUORE
EXO	SuperNEMO	Foils, tracking and scint.	MOON

Courtesy of P. Vogel

NEMO

Ю.Новиков- УС ОФВЭ 26.12.11

Факторы резонансного усиления єє-захвата

Ю.Новиков-УС ОФВЭ-26.12.11

Полученные значения энергии захвата в ¹⁵²Gd (Q_{2EC}), энергии двойной дырки (B_{2h}) и ширины двойной дырки (Г_{2h}) в дочернем ядре ¹⁵²Sm

Q _{2EC} , keV	55.70(18)
B _{2h} , keV	54.794(9)
$\Delta = Q-B, keV$	0.91(18)
Γ_{2EC} , eV	24.8(2.5)
T (half-life), years	$10^{26}/m_v^2$

$$\lambda_{00\varepsilon\varepsilon}^{res} = c \cdot |M|^2 \cdot |\psi_{1e}(0) \cdot \psi_{2e}(0)|^2 m_v^2 \frac{\Gamma}{\left(Q_{\varepsilon\varepsilon} - B_{2h}\right)^2 + \frac{1}{4}\Gamma^2}$$

Ю.Новиков-ПИЯФ-261211

Явление множественного безнейтринного резонанса

