ПРЕЦИЗИОННОЕ ИЗМЕРЕНИЕ СКОРОСТИ ЗАХВАТА МЮОНА В ВОДОРОДЕ И ОПРЕДЕЛЕНИЕ ПСЕВДОСКАЛЯРНОГО ФОРМ ФАКТОРА ПРОТОНА g_P

PNPI participants in MuCAP collaboration*):

V.A. Andreev, V.A. Ganzha, P. A.Kravtsov, A.G. Krivshich, M.P. Levchenko, E.M. Maev, O.E. Maev, G.E. Petrov, G.N. Schapkin, G.G. Semenchuk, M. A. Soroka, A.A. Vasilyev, A.A. Vorobyov, M.E. Vznuzdaev

Precision Measurement of Muon Capture on the Proton *"µCap experiment"*

$$\mu^{-} + p \rightarrow \nu_{\mu}^{+} n$$

www.npl.uiuc.edu/exp/mucapture/

Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia Paul Scherrer Institut, PSI, Villigen, Switzerland University of California, Berkeley, UCB and LBNL, USA University of Illinois, Urbana-Champaign, USA Universite Catholique de Louvain, Belgium TU Munich, Garching, Germany Boston University, USA University of Kentucky, USA

Muon Capture on Proton

$$\mu^{-} + p \rightarrow (\mu^{-}p)_{1S} \rightarrow \nu_{\mu} + n \quad BR=0.16\%$$

MuCap goal: to measure μ p-capture rate Λ_{\odot} with 1% (or better) precision

μp-capture offers a unique probe of the nucleon's electroweak axial structure

Muon capture on proton

$$V_{\alpha} = g_{V}(q^{2}) \gamma_{\alpha} + \frac{i g_{M}(q^{2})}{2 M_{N}} \sigma_{\alpha\beta} q^{\beta}$$
$$A_{\alpha} = g_{A}(q^{2}) \gamma_{\alpha} \gamma_{5} + \frac{\mathbf{g}_{P}(q^{2})}{m_{\mu}} q_{\alpha} \gamma_{5}$$

Стандартная Модель и структура нуклонов $g_v = 0.9755 \pm 0.0005$ $g_a = 1.245 \pm 0.003$ $g_m = 3.582 \pm 0.003$ $g_{P}(th) = 8.26 \pm 0.23$ $g_{P}(OMC) = 6 - 12$ $g_{P}(RMC) = 12.2 \pm 0.9 \pm 0.4$

pseudoscalar form factor g_P

PCAC:

$$g_P(q^2) = \frac{2 m_\mu M}{m_\pi^2 - q^2} g_A(0)$$

g_P=8.7

heavy baryon chiral perturbation theory:

$$g_P(q^2) = \frac{2 m_\mu g_{\pi NN} F_\pi}{m_\pi^2 - q^2} - \frac{1}{3} g_A(0) m_\mu M r_A^2$$

$$g_{p} = (8.74 \pm 0.23) - (0.48 \pm 0.02) = 8.26 \pm 0.23$$

A calculations O(p³) show good convergence: 100 % 25 % 3 % delta effect small LO NLO NNLO

0
SπNN
13.31(34)
13.0(1)
13.05(8)

author	year	gp	Λ_{s}	Λ_{T}	comment
Primakoff	1959		664(20)	11.9(7)	smaller g _A
Opat	1964		634	13.3	smaller g _A
Bernard et al	1994	8.44(23)			
Fearing et al	1997	8.21(9)			
Govaerts et al	2000	8.475(76)	688.4(38)	12.01(12)	
Bernard et al	2000/1		687.4 (711*)	12.9	NNLO, small scale
Ando et al	2001		695 (722*)	11.9	NNLO

*NLO result

Experimental information on g_P

Ordinary Muon Capture

 $\mu^- + p \rightarrow \nu_{\mu} + n$

BR~10⁻³, 8 experiments 1962-82, BC, neutron, electron detection *"in principle"* most direct g_p measurement

Radiative Muon Capture

 $\mu^{-} + p \rightarrow \nu_{\mu} + n + \gamma$

BR~10⁻⁸, TRIUMF (1998), $E_{\gamma} > 60 \text{ MeV}$, 297 ± 26 events closer to pion pole $\rightarrow 3x$ sensitivity of OMC theory more involved (min substitution, ChPT)

· Muon capture in nuclei

 $\mu + {}^{3}\text{He} \rightarrow \nu + {}^{3}\text{H} \quad \Lambda_{st} = 1496 \pm 4 \text{ s}^{-1} \quad \text{PSI} (1998)$ $g_p = g_p^{\text{th}} (1.08 \pm 0.19) \text{ error dominated by 3-N theory}$ correlation measurements

• π electro production at intreshold

μCap

50 years of effort to determine gPd

"Radiative muon capture in hydrogen was carried out only recently with the result that the derived *gP* was almost 50% too high. If this result is correct, it would be a sign of new physics... "

- Lincoln Wolfenstein (Ann.ReNucl.Part.Sci. 2003)

Pioneers of muon capture experiments

Emilio Zavattini 1927-2007

1969 Bologna-Pisa-CERN

H2 target 8 atm		g _p = 11.0 ± 3.8
-----------------	--	-----------------------------

1973 Dubna group

H2 -- target 41 atm

Expt. Problems

- Wall effects
- Background
- Neutron detection efficiency

Стратегия МиСар эксперимента

- У Измерение времени жизни (τ) с точностью 10ppm, регистрация μ→е∨∨ распадов (10^10)
- Однозначность интерпретации
 захват из F=0 состояния µр атома при плоти и и нитери и и нитери
- Использование методики активной мишени (ТРС)

с точной регистрацией координат и времени остановок мюонов, реконструкция треков электронов к точке распада.

log(counts)

,no capture

- Использование ультрачистого водорода Cz < 10ppb</p>
- Контроль примесей по реакциям: $\mu p + Z \rightarrow \mu Z + p$, Cz~10ppb.
- Обеспечение изотопической чистоты водорода µp + d → µd + p + 134eV, примесь Cd <1ppm, диффузия µd ~cm</p>

PSI meson factory

600MeV protons 2mA extracted proton beam 100% duty factor High intensity muon channels Muon-on-request mode

PNPI in PSI since 1986

- Muon catalyzed dd-and dt-fusion experiments (completed)
- Muon capture on He-3 (completed)
- Muon capture on proton (completed)
- Muon capture on deuteron (in progress)

Schematic view of the TPC

The trajectories of charged particles are measured in 3D space with resolution (rms) 1-2 mm.

The signal on TPC anode wires from μ -e decay event

RUN=17, event=45

μ

Display of a typical event with μ -capture reaction on impurity

IV. the new protium isotope separation facility: production of ultra-depleted protium

- Single muon requirement (to prevent systematics from pile-up)
- Iimits accepted μ rate to ~ 7 kHz,
- while PSI beam can provide ~ 70 kHz

Raw Data muPC1/TPC ePC1 ePC2 eSC

Общая набранная статистика

Год	µ+ (10^9)	μ- (10^9)	Cd(ppb)	H2O(ppb)
2004	0.2	2.0	~1400	~70
2005	1.4	3.5	~1400	36
2006	1.56	8.6	<60	18
2007	5.4	6.0	<6	8.7

Общий объемъ ванных за 2004-2007 гг. ~ 100 ТВ

TABLE: Applied corrections and systematic errors.

Effect	Corrections	and uncertainties [s-1]
	R06	R07
Z > 1 impurities	7.8 + - 1.9	4.5 + - 0.9
mu-p scatter removal	12.4 + - 3.2	7.2 + - 1.3
mu-p diffusion	3.1 + - 0.1	3.0 + - 0.1
mu-d diffusion	+ - 0.7	+ - 0.1
Fiducial volume cut	+ - 3.0	+ - 3.0
Entrance counter ineff.	+ - 0.5	+ - 0.5
Electron track def.	+ - 1.8	+ - 1.8
Total corr. λ_{μ}	23.3 + - 5.2	14.7 + - 3.9
mup bound state (${f D}_{\mu ho}$) 12.3 + - 0	0.0 12.3 + - 0.0
ppmu states (D _{ppu}) 17.7 + - 1.	9 17.7 + - 1.9

Результаты анализа данных за 2004-2007 год

 $N_{\mu} = 1.2 \times 10^{10}$

 $\lambda_{\mu} = 455851.4 \pm 12.5$ stat ± 8.5 syst s⁻¹ (MuCAP 2004).

 $\lambda_{\mu} = 455857.3 \pm 7.7$ stat ± 5.1 syst s⁻¹ (MuCAP 2006).

 $\lambda_{u-} = 455853.1 \pm 8.3$ stat ± 3.9 syst s⁻¹ (MuCAP 2007).

Muon Capture Rate λ_s

$$\lambda_{s} = \lambda_{\mu-} - (\lambda_{\mu+} - D_{\mu p}) + D_{p p \mu}$$

 $D\mu p = 12.3 \text{ s-1}$ (µp bound state)

Dpp $\mu = 17.7 \text{ s-1}$ ($\lambda pp\mu = (1.94 \pm 0.06)\mu \text{s-1}$)

Результаты анализа данных за 2004-2007 год

$$\begin{split} \lambda_{\mu^+} &= 455170.05 \pm 0.46 \text{ s}^{-1} \text{ (}\mu\text{LAN experiment)} \\ \lambda_{\mu^-} &= 455854.9 \pm 5.4 \text{stat} \pm 4.7 \text{syst} \text{ s}^{-1} \text{ (MuCap 2004-2007)} \\ \Lambda_8^{\text{MuCap}}(\text{aver.}) &= 714.9 \pm 5.4 \text{stat} \pm 5.3 \text{syst} \text{ s}^{-1} \\ \Lambda_8^{\text{Th}} &= 693.3 \text{ s}^{-1} \text{ (aver.)} + 19.4 \text{s}^{-1} \text{ (r.c.)} = 712.7 \pm 3.0 \pm 3.0 \text{ s}^{-1} \\ g_P^{\text{MuCap}} &= g_P^{\text{Th}} - 0.065 \text{ x} \text{ (}\Lambda_8^{\text{MuCap}} - \Lambda_8^{\text{Th}} \text{)} \end{split}$$

 $g_{P}^{MuCap} = 8.06 \pm 0.48(exp) \pm 0.28(th)$

 $g_{P}^{Th} = 8.2 \pm 0.2 (2.8\%)$

Precise and unambiguous MuCap result solves longstanding puzzle

MuCap collaboration

Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia Paul Scherrer Institute (PSI), Villigen, Switzerland University of California, Berkeley (UCB and LBNL), USA University of Illinois at Urbana-Champaign (UIUC), USA Université Catholique de Louvain, Belgium TU München, Garching, Germany University of Kentucky, Lexington, USA Boston University, USA Earlier, in 1998, we have studied the muon capture on ³He. The muon capture rate in the channel μ^2 + ³He \rightarrow ³H + v_u was measured with high precision :

$$\Lambda_c = 1496.0 \pm 4.0 \text{ s}^{-1} (0.3\%)$$

This result have been used in some theoretical analyses : L.E. Marcucci et al. (2012) [1] and D. Gazit(2009) [2] for deriving the Λ_c and the proton's pseudoscalar form factor g_p . $\Lambda_c = 1494 \pm 21s^{-1}$ [1] and $\Lambda_c = 1499 \pm 12 s^{-1}$ ([2]. $g_p = 8.13 \pm 0.6$ [2]