Эксперимент OLYMPUS и

форм факторы протона

С.Белостоцкий

FF definition and observables

In plane wave Born (OPE) approximation e-p scattering invariant amplitude

 $\mathbf{M}_{\mu\nu} \sim \mathbf{e}_{e} \cdot \left. \overline{u} \left(\mathbf{k}_{e} \right) \gamma^{\mu} u \left(\mathbf{k}_{e} \right) \right. \cdot \left(-\frac{1}{q^{2}} \right) \cdot \left. \mathbf{e}_{p} \overline{u} \left(\mathbf{k}_{p} \right) \right| \left. \mathbf{F}_{1}(\mathbf{Q}^{2}) \gamma^{\mu} + \frac{1}{2\mathbf{M}_{p}} \mathbf{F}_{2}(\mathbf{Q}^{2}) \mathbf{i} \sigma^{\mu\nu} q_{\nu} \right| u \left(\mathbf{k}_{p} \right)$ J γ $\mathbf{J}_{\mathbf{p}}$

Unpolarized cross section

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma}{d\Omega}_{Mott} \frac{1}{\epsilon(1+\tau)} \Big[\epsilon \mathbf{G}_{E}^{2}(\mathbf{Q}^{2}) + \tau \mathbf{G}_{M}^{2}(\mathbf{Q}^{2}) \Big], \quad \tau = \frac{\mathbf{Q}^{2}}{4M_{p}},$$
photon polarization
$$\epsilon = \frac{1}{1+2(1+\tau)\tan^{2}(\theta_{e}/2)}, \quad 0 < \epsilon < 1.$$

under study for decades

$$\boldsymbol{\sigma}_{\mathbf{r}} = \boldsymbol{\varepsilon} \mathbf{G}_{\mathbf{E}}^2(\mathbf{Q}^2) + \boldsymbol{\tau} \mathbf{G}_{\mathbf{M}}^2(\mathbf{Q}^2)$$

Theoretical interpretation

VMD-based models (Lomon, Bijker)

Relativistic constituent quark (rCQM), G.A. Miller, many others

Behavior of $G_{\rm Ep}/G_{\rm Mp}$ at intermediate Q² related to u/d ratio at small distances (Miller et al.)

Lattice QCD models

Dyson-Schwinger equations, as continuum approach to QCD (Roberts, Cloet et al.).

Flavor separation for "dressed" quarks in nucleon

Extraction of FFs from unpolarized e-p elastic scattering

JLAB measurements of recoil proton polarization

Direct measurements:

 P_{\parallel} along recoil proton momentum, P_{\perp} perp. to recoil proton momentum in scat. plane

$$\frac{\mu G_{\rm E}({\rm Q}^2)}{G_{\rm M}({\rm Q}^2)} = \mu \frac{P_{\perp}}{P_{\parallel}} \cdot \sqrt{\frac{\tau(1+\varepsilon)}{2\varepsilon}}$$

Polarized JLAB measurements

$$\frac{\mu_{\rm p}G_{\rm E}({\rm Q}^2)}{G_{\rm M}({\rm Q}^2)} = ???$$

Two photon exchange TPE and beam charge asymmetry

Most likely explanation

Second order corrections affect strongly $\mu_p G_E(Q^2)/G_M(Q^2)$ extracted from unpolarized experiments

keeping intact polarized data

Beam charge asymmetry sensitive to TPE:

$$\frac{\sigma^{e^+p}(\theta_e)}{\sigma^{e^-p}(\theta_e)} = 1 + \frac{4M_{Born}(\theta_e)\operatorname{Re}(M_{2\gamma}^*(\theta_e))}{\left|M_{Born}(\theta_e)\right|^2} + QED_{cor} \qquad \text{must be} \\ \text{measured}$$

TPE or some other explanations ???

Are the RC corrections applied to cross section data accurate enough? Bystritskiy,Kuraev, and Tomasi-Gustafsson answer no, based on structure function calculation, which leaves no room for measurable two-photon effects.

Others see the discrepancy as mostly explainable in terms of two-photon effect. For example Afanasev, Brodsky, Carlson, Chen and Vanderhaeghen; Arrington; Blunden, Melnitchouk and Tjon; Borysyuk and Kobushkin; Guttmann, Kivel, Meziane and Vanderhaeghen; and others.

VEPP-3 Novosibirsk

OLYMPUS collaboration

Российские участники

- Arizona State University, USA
- DESY, Hamburg, Germany
- Hampton University, USA
- INFN Bari, Ferrara, and Rome, Italy
- MIT and MIT-Bates, USA
- Petersburg Nuclear Physics Institute, Russia
- University of Bonn, Germany
- University of Glasgow, United Kingdom
- University of Mainz, Germany
- University of New Hampshire, USA
- Yerevan Physics Institute, Armenia

ПИЯФ

С.Белостоцкий Г.Гаврилов Д.Веретенникоков А.Изотов А.Киселев О.Миклухо Ю.Нарышкин

<u>Отдел трековых детекторов</u> А.Крившич, В Андреев, Е.Иванов,... <u>Лаборатория радиоэлектроники</u> Л.Уваров **Воронежский государственный университет** (студенты) К.Суворов, К.Байбуз

OLYMPUS at DORIS, DESY

Doris storage ring 2-4.5 GeV 2 GeV e⁺,e⁻ beams, 100 mA, change daily, Beam energy stability 0.5 MeV Beam position 0.1mm quasi continuous beam ("topup" mode) Белостоцкий сессия ОФВЭ 2012

 $Luminosity = 2 \cdot 10^{33} \, \text{cm}^{-2} \text{s}^{-1}$

Olympus detector

12 deg. Luminosity monitor

e⁺p/e⁻p ratio must be 1 as TPE expected to be small at low Q**2 Sci. counters SiPMs, MWPCs, PNPI readout, GEMs

Energy deposit in TOF scintillation bar for **recoil protons** in coincidence with 12 deg. leptons *Target density measurement* **Good agreement with MC**

 $e^+p/e^-p = 1.0067 \pm 0.0008$ close to unity

Symmetric Meoller /Bhabha monitor

at 2 GeV $\theta_{symm.}(e^-e^-, e^+e^-) = 1.3 \text{ deg.}$

Data taking

Two period of data taking in 2012 Febr and Oct.-Nov.Dec.-Janu 2. Doris full stop in 2013

Outlook

2013 Survey, upgrade of geometrical file for MC Toroid field mapping Setup disassembly

Data analysis:

Finalize tracking Dedicated computer (available) Two analysis groups: MIT and PNPI cross-check

2014 Data analysis, consensus, publication

"Experimental and theoretical aspects of the proton form factors"

symposium 9-13 July 2012, St.Petersburg, Gatchina, Petersburg Nuclear Physics Institute (PNPI)

- Multi-photon effects in charge lepton proton scattering;
- Form factors in QCD. Lattice calculations;

• Beam charge asymmetry in electron/positron proton elastic scattering: overview of current experiments and data analysis;

- Proton form factors and recoil proton polarization experiments;
- Proton structure at large momentum transfer;
- Charge lepton proton elastic scattering at low momentum transfer, proton radius;
- Form factors in time-like region.

http://hepd.pnpi.spb.ru/hepd/olympus_2012/

BACKUP SLIDES

Proton Charge Radius Puzzle

The figure is from X. Zhan et al., PLB 705, 59 (2011)

Connection to radius of the proton:

 $F(q^2) = 1 - \frac{1}{6} \frac{q^2 < r^2 >}{\hbar^2} +$ $< r^2 >= -6\hbar^2 \frac{dF(q^2)}{dq^2}|_{q^2}$

The New York Times, July 13, 2010. It went from 0.8768±0.0069 fm to 0.8418±0.0007 fm "For a Proton, a Little Off the Top (or Side) Could Be Big Trouble"

SPIN2012

Radiative corrections have been applied. Systematic error 0.3% (not shown)

CLAS-JLAB preliminary

Rosenbluth separation (L-T separation)

$$\sigma_{\rm r} = \varepsilon G_{\rm E}^2(Q^2) + \tau G_{\rm M}^2(Q^2) \qquad scan \quad \varepsilon = \frac{1}{1 + 2(1 + \tau)\tan^2(\theta_{\rm e}/2)} \quad at fixed \quad \tau = \frac{Q^2}{4M_{\rm p}}$$
$$Q^2 = -q^2 = 4E_{\rm e}E_{\rm e}^{\rm i}\sin^2\frac{\theta_{\rm e}}{2} \qquad E_{\rm e}^{\rm i}(E_{\rm e}^{\rm i}), \theta_{\rm e}^{\rm i} \to 2\pi, \ \varepsilon \to 0$$

scalar photon fraction $\rightarrow 1$

Extraction of FFs from Unpolarized Elastic e-p Scattering

JLAB Polarization Transfer Results

(V.Punjabi, C.F.Perdrisat, et al. Phys.Rev. C71, 2005)

disagreement with LT separation results

TABLE VI: The ratio $\mu_p G_{Ep}/G_{Mp} \pm$ statistical uncertainty (1 σ). Δ_{sys} is the systematic uncertainty from Table VII. \overline{Q}^2 and $\overline{\chi}_{\theta}$ are the weighted average four momentum transfer squared and spin precession angle, respectively. ΔQ^2 is half the Q^2 acceptance. The last column P_t/P_ℓ is the ratio of measured polarization components at the target, the relative uncertainty is the same as for $\mu_p G_{Ep}/G_{Mp}$.

$\overline{Q}^2 \pm \Delta Q^2$	$\overline{\chi}_{\theta}$	$\mu_p G_{Ep}/G_{Mp}$	Δ_{sys}	P_t/P_ℓ
(GeV^2)	(deg)	$(\pm \text{ stat. uncert.})$		
$0.49 {\pm}.04$	105	0.979 ± 0.016	0.006	-0.822
$0.79 {\pm} .02$	118	0.951 ± 0.012	0.010	-0.527
$1.18 {\pm}.07$	136	0.883 ± 0.013	0.018	-0.492
$1.48 {\pm}.11$	150	0.798 ± 0.029	0.026	-0.422
$1.77 {\pm} .12$	164	0.789 ± 0.024	0.035	-0.381
$1.88{\pm}.13$	168	0.777 ± 0.024	0.033	-0.368
$2.13 {\pm} .15$	181	0.747 ± 0.032	0.034	-0.329
$2.47 {\pm} .17$	196	0.703 ± 0.023	0.033	-0.284
$2.97 {\pm} .20$	218	0.615 ± 0.029	0.021	-0.224
$3.47 {\pm} .20$	239	0.606 ± 0.042	0.014	-0.198

Radiative Corrections & TPE graphs

Contribution from two photon exchange diagram not taken into account in traditional analysis may be an explanation

Charge asymmetry & TPE graph theoretical calculations

Intermediate state contributions \rightarrow model dependent calculations

- P.A.M. Guichon and M. Vanderhaeghen, PRL91, 142303 (2003)
- P.G. Blunden, W. Melnitchouk, and J.A. Tjon, PRC72, 034612 (2005), PRL91, 142304 (2003)
- M.P. Rekalo and E. Tomasi-Gustafsson, EPJA22, 331 (2004)
- Y.C. Chen et al., PRL93, 122301 (2004)
- A.V. Afanasev and N.P. Merenkov, PRD70, 073002 (2004)

•

VEPP-3 experiment

 E_e =1.6 GeV (up to 2 GeV) electron current ~ 30mA, positron current limited to ~ 9mA HERMES type gas target 10¹⁵ atoms/cm², L~10³¹cm⁻²s

Planned for 2009-11

JLAB Polarization Transfer Results

Hall B, CLAS spectrometer, primary 5.7Gev e-beam $1\mu A \rightarrow \gamma$ -beam \rightarrow e+e-beam 250 pA \rightarrow thick hydrogen target \rightarrow L=1.3x10³³ cm⁻²sec⁻¹ Major challenge hard background conditions related to e+eproduction target

