Лазерная спектроскопия нейтронно-дефицитных изотопов таллия (ПИЯФ и CERN)

А. Е. Барзах, Ю. М. Волков, В. С. Иванов, К. А. Мезилев, П. Л. Молканов, Ф. В. Мороз, С. Ю. Орлов, В. Н. Пантелеев, М. Д. Селиверстов, Д. В. Федоров

- 1. Изотопические изменения зарядовых радиусов и сосуществование форм в нейтронно-дефицитных изотопах TI (ИРИС & ISOLDE).
- 2. Аномалия сверхтонкой структуры у изотопов TI и возможность изучения распределения ядерной намагниченности (ИРИС).
- 3. Ядерная спектроскопия ¹⁸⁰TI и ¹⁸⁰Hg. Изомерно селективное исследование ¹⁸⁴TI и ^{184m}TI (ISOLDE).
- Перспективы: исследование сосуществования форм, запаздывающего деления, октупольной деформации, радиусов и моментов цепочки изотопов At и Bi (ИРИС & ISOLDE).

 Изотопические изменения зарядовых радиусов и сосуществование форм в нейтронно-дефицитных изотопах таллия

 Shape coexistence = proximity of spherical and/or deformed shapes(s) at low energy (E < few MeV)

Shape coexistence in neutron deficient ${}_{82}$ Pb and ${}_{84}$ Po isotopes (even-proton) was investigated at ISOLDE previously. The aim is to extend these studies on odd-proton isotopic chains. We begun with ${}_{81}$ Tl

Fig. 1. Energy-level diagram of TI I with the investigated transitions

¹⁸³ TI, I=1/2, T _{1/2} =6.9 s	¹⁸⁴ TI, I=7, T _{1/2} =11 s	¹⁸⁵ TI, I=1/2, T _{1/2} =19.5 s	¹⁸⁶ TI, I=7, T _{1/2} =27.5 s		¹⁸⁸ TI, I=7, T _{1/2} =71 s
		¹⁸⁵ TI, I=9/2, T _{1/2} =1.8 s	¹⁸⁶ TI, I=10, T _{1/2} =2.9 s	¹⁸⁷ TI, I=9/2, T _{1/2} =15.6 s	¹⁸⁸ TI, I=9, T _{1/2} =0.04 s
	¹⁹⁰ Tl, I=7, T _{1/2} =3.7 m		¹⁹² TI, I=7, T _{1/2} =10.8 m		¹⁹⁴ TI, I=7, T _{1/2} =32.8 m
¹⁸⁹ TI, I=9/2, T _{1/2} =84 s	¹⁹⁰ TI, I=2, T _{1/2} =2.6 m	¹⁹¹ TI, I=9/2, T _{1/2} =5.2 m	¹⁹² TI, I=2, T _{1/2} =9.6 m	¹⁹³ TI, I=9/2, T _{1/2} =2.1 m	¹⁹⁴ TI, I=2, T _{1/2} =33 m
rep 6 <i>p</i>	eated for and ${}^{2}P_{1/2} \rightarrow 6d^{2}D$	measured previously for $6p^2P_{3/2} \rightarrow 7s^2S_{1/2}$			
¹⁹⁵ TI, I=c for King-plot calibration				transition (535.2 nm)	
T _{1/2} =3.6 s		T _{1/2} =0.54 s			

/2, ²⁰⁷Tl, I=1/2, T_{1/2}=4.77 m

¹⁷⁹ TI, I=1/2,	¹⁸⁰ TI, I=(4,5),	¹⁸¹ TI, I=1/2,	¹⁸² TI , I=(4,5),	¹⁸³ TI, I=1/2,	¹⁸⁴ TI, I=7,
T _{1/2} = 0.23 s	T _{1/2} =1.1 s	T _{1/2} =3.4 s	T _{1/2} =3.1 s	T _{1/2} =6.9 s	T _{1/2} =11 s
				¹⁸³ TI, I=9/2, T _{1/2} = 0.053 s	¹⁸⁴ TI, I>8, T _{1/2} <1 s

Laser Ion Source (LIS)

2. Аномалия сверхтонкой структуры и возможность изучения распределения ядерной намагниченности

2I + 1

$$\begin{array}{c}
\mu_{A} \\
I \\
\mu_{A} \\
\mu_{A} \\
\mu_{A} \\
\mu_{A} \\
\mu_{A} \\
\mu_{205} \\
\mu_{1} \\
\mu_{1} \\
\mu_{1} \\
\mu_{205} \\
\mu_$$

 $=(\mathcal{E}_{A_1}-\mathcal{E}_{A_2})$

$$\rho_{n_1l_1,n_2l_2}^{A} = \frac{a_{n_1l_1}^{A}}{a_{n_2l_2}^{A}},$$

Ratio ρ_{l_1,l_2}^A can have a different value for different isotopes because the atomic states with different *n*, *l*

have different sensitivity to the nuclear magnetization distribution.

Our case: we have studied state with $p_{1/2}$ valence electron; previously state with $s_{1/2}$ valence electron has been studied

$${}^{n_1 l_1}_{A_1} \Delta^{n_2 l_2}_{A_2} = \frac{\rho^{A_1}_{n_1 l_1, n_2 l_2}}{\rho^{A_2}_{n_1 l_1, n_2 l_2}} - 1 = {}^{A_1} \Delta^{A_2} (n_1 l_1) - {}^{A_1} \Delta^{A_2} (n_2 l_2)$$

$$\mu_{nl} \equiv \mu_{205} \cdot \frac{I_A}{I_{205}} \cdot \frac{a_A(nl)}{a_{205}(nl)} \quad \Longrightarrow \quad \mu_A = \mu_{nl} \cdot (1 + {}^{205}\Delta_{nl}^A)$$

DHFA calculation Atomic part: atomic many-body technique (relativistic "coupled-cluster" approach) by A.-M. Mårtensson-Pendrill

Magnetic moments for TI isomers with I=9/2

3. Ядерная спектроскопия ¹⁸⁰TI и ¹⁸⁰Hg. Изомерно селективное исследование ¹⁸⁴TI и ^{184m}TI.

Minimum of the 0_2^+ energy (strongly prolate deformed state) is established at *N*=102 Ground 0_1^+ states is weakly oblate deformed

Energy systematics of excited states of even-even neutron-deficient Hg isotopes.

The filled triangles show the newly identified states. The full dots are the level energies associated with the weakly oblate ground-state band, the open dots are those related to the excited strongly prolate band. However, at low spin states, strong mixing can occur.

previously unknown isomer with I=10

with frequency of the narrow-band laser fixed at the marked positions isomer selectivity is obtained and one can investigate properties of the pure isomer state

Proposal for future shape coexistence and βDF studies for a long series of At isotopes (ISOLDE)

Task 1. Fission fragment mass distribution in the βDF studies of ^{192,194,196}At
 Task 2. Isotope shifts, HFS and charge radii measurements for a long series of isotopes ^{192-212, 217-223}At and βDF of ¹⁹⁴At in narrowband mode
 Task 3. ISOLTRAP Mass measurement for ^{198m1, m2}At
 Task 4. Detailed α/β-decay studies of ¹⁹²⁻²⁰⁴At

6p⁵ -

J=3/2

----- 0 cm⁻¹

Заключение

- 1. Продемонстрирована работоспособность и эффективность новой лазерной установки на масс-сепараторе ИРИС.
- Впервые измерена аномалия сверхтонкой структуры для изомеров таллия с /=9/2, что позволило уточнить значения ранее измеренных магнитных моментов. Показано, что современные атомные расчеты удовлетворительно описывают «атомные» факторы, необходимые для вычисления HFA (ИРИС).
- Измерены изотопические сдвиги для 28 изотопов (изомеров) ТІ на переходе 276.9 nm. Определены электронный фактор и массовый сдвиг для этого перехода, необходимые для получения данных о δ<r²>. Получены новые данные о μ, δ<r²> и деформации для 14 изотопов (изомеров) ТІ, что позволит продвинуться в понимании и теоретическом описании феномена сосуществования форм (ИРИС, ISOLDE).
- 4. Обнаружен новый изомер ^{184m}TI на границе области сосуществования форм; в режиме изомерной селективности исследованы ядерноспектроскопические свойства ^{184m}TI, а также ¹⁸⁰TI, что важно для описания асимметричного запаздывающего деления и эволюции форм в этой области ядер (ISOLDE).
- 5. Предложены эксперименты по дальнейшему исследованию рассматриваемой области ядер (ИРИС, ISOLDE).

Magnetic moments for TI isomers with I=9/2

