

Эксперимент µSun 2008-2013 гг.

Планы 2008 года:

Декабрь 2008 г. – создание в ПИЯФ криогенной время-проекционной ионизационной камеры (Cryo_TPC) и испытание при азотных температурах.

Май 2009 г. – создание и испытание в ПИЯФ системы охлаждения и полная сборка криогенной системы.

Июнь-сентябрь 2009 г. – испытания в ПИЯФ, подготовка к пучку.

Ноябрь-декабрь 2009 г. – первый тестовый пучок в PSI.

2010 г. – 2013 г. – набор статистики.

Действительность:

Май 2010 г. – первый тестовый пучок в PSI.

Октябрь-декабрь 2010 г. – набор 10% статистики.

Май-август 2011 г. – пучок в PSI, набор 50% статистики.

Планы:

2012 год – переезд на новый пучок, модернизация системы.

2013 год – окончательный набор статистики.

Эксперимент μ Сар закончен в 2007 $\mu^- + p o n + V_\mu$ Набранная статистика 2·10¹⁰ событий остановок мюона

На сегодняшний день обработано 10% событий

Псевдоскалярный форм-фактор нуклона $g_p = 7.3 \pm 1.1$ V. A. Andreev et al., Phys. Rev. Lett., 99, 032002 (2007)

Окончательная обработка всех данных ожидается в начале 2012 кода ! (?)

Изучаемая реакция

Эксперимент µSun начался в 2008

$$\mu^- + d \rightarrow \nu_\mu + n + n$$

Измерение скорости захвата мюона с точностью 1% необходимо для уточнения современной теории слабого взаимодействия, Effective Field Theory, EFT

первичного нуклеосинтеза на Солнце

А. Васильев

Кинетическая схема взаимодействия µ⁻ с дейтерием

4

Процессы захвата мюона

 μ SC – время входа мюона (t_{μ}) CryoTPC - остановка мюона ePC1, ePC2 – траектория электрона eSC - время вылета электрона (t_s)

6

 $\mu +$

«Мюон по запросу» «Muon-on-Request»

Требуется попадание в камеру только одного мюона за период измерения - 25µs

Pile-up мюоны существенно подавлены

(средняя частота следования мюонов в пучке ~100 kHz)

«Тяжелые» примеси

Требования к чистоте: Все «тяжелые» примеси менее 1 ppb

Nucl. Instrum. Meth., A578:485-497, 2007.

Система создана в 2003 году. Ресурс ПОЛНОСТЬЮ выработан!

26.12.2011

А. Васильев

«Легкие» примеси.

26.12.2011

Pad plane (Анод)

26.12.2011

А. Васильев

Катодная плоскость и дрейфовый промежуток

Катод с 100 µm серебренной фольгой

Потенциал катода -80...-90 kV Катод С Напряженность поля 80 kV/7.3 cm = 11 kV/cm Однородность (по абсолютной величине) напряженности поля 4-5%

- Проблемы высоковольтной системы:
- -Большие диэлектрические поверхности
- При утечках и пробоях вспышки рентгеновского излучения

26.12.2011

А. Васильев

12

Экранирующая сетка

Задача сетки – экранировка положительного объёмного заряда в области прохождения или остановки мюона.

- Сетка должна быть прозрачна для электронов.

-Сетка должна экранировать электрическое поле положительного объемного заряда.

-Материалы рамки должны быть слабо-магнитными при криогенных температурах.

Система охлаждения

26.12.2011

А. Васильев

14

Работа системы охлаждения

Вакуумная система, сложности юстировки

Остановки мюонов в Cryo_TPC в плоскости анода

Распределение остановок мюонов в дрейфовом промежутке по

вертикали

Относительная доля событий для каждого шага отбора и суммарная скорость набора этих событий на пучке.

Критерий отбора	Эффективность, %	Скорость, кГц
Сработал µSC, кикер выключен		25
Сработал µSC, кикер включен		25/80
Совпадение срабатывания µSC и µPC1	75	19
Остановка в чувствительной области ТРС	56	10
Полностью реконструированный трек электрона	61	6

10¹⁰ событий / 6000 Hz = 1.6 10⁶ s = 20 days

Энергетический спектр

А. Васильев

Эффект «прилипания»

За время сеанса в период с 15 июня по 10 сентября 2011 года была набран следующий массив данных

Пучок	Количество набранных файлов	Количество остановок мюона в ТРС	Количество электронов от распада мюона
μ	13122	1.0×10 ¹⁰	0.7×10^{10}
μ^+	1540	1.1×10 ⁹	0.8×10 ⁹

Набранная статистика позволяет получить точность определения скорости захвата мюона дейтроном на уровне 10 с⁻¹.

Планы:

2012 год – переезд на новый пучок *п*ЕЗ, модернизация системы.

2013 год – окончательный набор статистики.