Сверхбыстрые сцинтилляторы для ПЭТ на основе кристаллов и керамик из BaF₂

Д.М. Селиверстов

Ю.И. Гусев, Д.В. Леушев, С.В. Косьяненко, В.М. Суворов – ПИЯФ Е.А. Гарибин, П.Е. Гусев, А.Н. Смирнов – ЗАО ИНКРОМ П.А. Родный, С.Д. Гаин - СПбПГУ И.А. Миронов - ГОИ

Параметры отбора сцинтилляторов при создании детекторов

- 1. Прозрачность на длине волны высвечивания
- 2. Большой световыход
- 3. Высокая плотность материала
- 4. Короткое время сцинтилляции
- 5. Отсутствие гигроскопичности
- 6. Температурная стабильность оптических свойств
- 7. Механические свойства
- 8. Стоимость сцинтиллятора

Свойства неорганических сцинтилляторов

Сцинтиллятор	Плотность г/см ³	Длина волны, нм	Индекс рефракции	Время мксек	Абсолютный выход, фот./МэВ
Nal(Tl)	3,67	415	1,85	0,23	38 000
CsI(TI)	4,51	540	1,80	0,68(64%) 3,34(36%)	65 000
BGO	7,13	480	2,15	0,3	8200
CeF ₃	6,16	310, 340	1,68	0.005, 0.027	4400
LSO	7.4	420	1.82	0.047	25 000
BaF_2 (fast component)	4.89	220		0.0006	1400
BaF ₂ (slow component)	4.89	310	1.56	0.63	9500

ПЭТ

Ученый Совет ОФВЭ ПИЯФ

Longitudinal transmittance of BaF₂ samples

Transmittance of BaF₂-0.12%CeF₃ crystal from ingot 3117 and *ceramics*

Ученый Совет ОФВЭ ПИЯФ

Transmittance of BaF₂-0.12%CeF₃ crystal from ingot 3120 and ceramics

Влияние различных легирующих элементов на прозрачность образцов

X-ray induced emission spectra of ceramics

Kinetics and light output of BaF₂ ceramics versus CeF₃ doping

Yield

Ph/keV

11.0

11.0

26.5

17.0

19.5

17.5

8.0

Dependence of BaF₂ kinetic properties versus CeF₃ admixture

Influence of Cd doping on the ceramics

Influence of Cd doping on the crystal BaF₂

Influence of Cd doping on optical parameters

State	Concentration of Cd, Mol.%	Light output, a.u	Decay time, ns	
Crystal	0.1	39470	397 5	
Ceramic	0.1	49260	441 7	
Crystal	0.3	30380	429 6	
Ceramic	0.3	10900	446 7	

Кристаллы BaF₂, легированные Sc

Изготовлены и протестированы образцы кристаллов размером 5 5 15 мм и 10 10 15мм с содержанием Sc 1% и 2%.

Производится изготовление образцов керамик BaF₂, легированных Sc аналогичного размера.

Annealing of BaF₂: ScF₃ ceramics in CF₄

ScF ₃ %	δ,%	CF ₄	$ au_1$	I ₁	$ au_2$	I_2
-	243.3	-	2.0 0.1	762 17	500 7	45 0.4
-	243.3	+	1.7 0.1	2154 30	490 8	33 0.4
0.5	197.5	-	1.8 0.1	1377 24	390 5	44 0.4
0.5	197.5	+	1.7 0.1	2666 32	384 6	33.5
2.0	214.3	-	1.9 0.1	2015 30	383 5	40 .5
2.0	214.3	+	2.0 0.1	2570 30	405 6	30 0.4

Влияние отжига керамик из BaF₂ в атмосфере CF₄ на кинетические свойства

Чистая керамика BaF_2 без отжига (1) и с отжигом в CF_4 (2)

Ученый Совет ОФВЭ ПИЯФ

Керамика $BaF_2:0.5\%$ ScF3 без отжига (1), с отжигом в CF₄ (2)

Керамика $BaF_2:2\%$ ScF3 без отжига (1), с отжигом в CF₄ (2)

Kinetic measurements of the prototype samples

Световыход кристаллов BaF₂, легированных Sc.

Список публикаций группы ФЭЯ в 2010 году.

- А.А. Демиденко, Yu. Gusev, D.M. Seliverstov et al. "Scintillion Parameters of BaF₂ and BaF₂:Ce³⁺ ceramics". Optical Materials 32 (2010) 1291-1293.
- 2. П.А. Родный,... Ю.И. Гусев, Д.М. Селиверстов et al. "Спектрально-кинетические характеристики кристаллов и нанокерамик на основе BaF₂ and BaF₂: Ce". ФТТ 52 (2010) 1780-1784.
- S.A. Eliseev, Yu. N. Novikov, M.D. Seliverstov et al. "A new route to the neutrino mass measurement of ¹⁹⁴Hg and ¹⁹⁴Au". Phys. Lett. B6A3 9 (2010) 426-429.
- M. Block ..., S.A. Eliseev, Yu. N. Novikov, G.K. Vorobjev et al. "Direct mass measurement above uranium bridge the gap to the island of stability". Nature Lett. 463 (2010) 785-787.
- 5. D. Rodrique ..., Yu. N. Novikov, Yu. I. Gusev, M.D. Seliverstov et al. "MATS – project at FAIR" Eur. Phys. J. Special Topics 183 (2010) PP1-123.

- J.D. Vergados and Yu. N. Novikov. "Exploring new features of neutrino oscillations with very low energy monoenergetic neutrinos". Nucl. Phys. B 839 (2010) 1-20.
- K. Blaum, S.A. Eliseev, and Sz. Nagy.
 "Penning traps and Fundamental Physics". AIP Conf. Proc. 126 (2010) 293-299.
- F. Herfurth, ...A. Sokolov, G. Vorobjev. "HITRAP Heavy, Highly-charged lons and Antiprotons at Rest". Acta Physica Polonica B, 41, No. 2, February 2010.
- M. Block, S.A. Eliseev, Yu.N. Novikov, ...G.K. Vorobjev. "Penning trap mass measurements of trans-fermium elements with SHIPTRAP". Hyperfine Interaction 196 (2010) 225-231.

10. Z.Y.Sun, L.Andronenko et al.,"Isospin Diffusion and Equilibration for Sn+Sn collisions at E/A=35 MeV"

Phys. Rev. C 82, 051603(R) (2010).