FAIR, NUSTAR, R3B + EXL

FAIR – Facility for Antiproton and Ion Research NUSTAR – Nuclear Structure, Astrophysics, and Reactions

NUSTAR:

HISPEC-DESPEC – High-Resolution In-Flight and Decay Spectroscopy ILIMA - Schottky and Isochronos mass spectroscopy MATS - Mass measurements with a Penning Trap LASPEC – Laser Spectroscopy investigations ELISE – Electron scattering in a storage ring AIC – Antiproton Ion Collider

R3B – Reactions with Relativistic Radioactive Beams EXL – Exotic Light-ions (exotic nuclei studied in light-ion induced reactions at the NESR ring)

FAIR, NUSTAR, R3B + EXL

R3B – studies at external beams of nuclei **EXL** – studies at internal beams of nuclei at the NESR ring

Physics goals:

Nuclear density distributions, single-particle structure, shell-occupation probabilities, unbound states, nuclear resonances, transition strengths, astrophysical S factor, giant dipole and quadrupole strength, B(E2), deformations, Gamov-Teller strength, reaction mechanism, nuclear waste transmutation,...

Reaction type:

Elastic and inelastic pA scattering, total reaction and interaction cross sections, knockout and quasifree scattering, electromagnetic excitation and dissociation, charge-exchange reactions, fission, spallation, fragmentation

FAIR - Facility for Antiproton and Ion Research

NUSTAR facility **NUclear STructure Astrophysics and Reactions**)

EXL

Схематическое изображение установки EXL

Детектор протонов (ядер) отдачи

Центральное сечение детектора эксперимента EXL в горизонтальной плоскости, показывающее состав детекторов, формирующих кремниевый позиционно чувствительный спектрометр и сцинтилляционную оболочку.

 First
 DSSD - e.g. $2.1 \times 2.1 \text{ cm}^2$, 0.3/1.25 mm pitch (PTI, EXL)
 or 0.1/0.1 mm pitch R³B

 Second DSSD - e.g. $5.2 \times 6.7 \text{ cm}^2$, 0.1/0.2 mm pitch (Micron, EXL)
 or 0.1/0.1 mm pitch R³B

 Si(Li) or Si
 - e.g. $9 \times 5 \text{ cm}^2$, $4 \times 2 \text{ pads} \text{ ----}$ EXL

 Csl
 - e.g. volume $3 \times 3 \text{ cm}^2 \times 20 \text{ cm}$

(DSSD – double side silicon detector)

- Si, 300 µm thick, double sided, spatial resolution better than 500 µm in X and Y, ΔE ≈ 30 keV (FWHM)
- Si, ≤ 100 µm thick, double sided, spatial resolution better than 100 µm in X and Y, ΔE ≈ 30 keV (FWHM)
- Si(Li), 9 mm thick, large area 100*100 mm², ΔE ≈ 50 keV (FWHM)
- Csl crystals, high efficiency, high resolution, 20 cm thick
- TOF resolution \approx 1 ns (FWHM)

Залите А.Ю., Залите Ю.К.

Кремниевые детекторы в эксперименте EXL (и R3B)

Назначение	Тип детектора	Технология	Новизна
100 - 1000 кэВ Іозиционно кувствительная спектрометрия	150 мкм DSSD	Планарная ИИ + CVD	Аналогов нет
- 10мэВ Іозиционно кувствительная спектрометрия	300 мкм DSSD	Планарная ИИ + 3D	Аналогов нет
I0 – 100мэВ	(2.5 – 3 мм) х 3	Планарная	Аналогов
Спектрометрия	Сегментированный	ИИ	нет
I0 – 100мэВ	8 мм	Si(Li)	Аналоги
Спектрометрия	сегментированный		существуют
Іетектирующая	150 мкм	Планарная	Аналогов
ЈНV оболочка	DSSD,	ИИ + CVD	нет

(ИИ – ионная имплантация, CVD – chemical vacuum deposition, 3D – 3-dimensional)

Identification of the particles stopped in the first layer.

Identification of the particles stopped in the second layer

Фотография прототипа планарного сегментированного кремниевого детектора толщиной 1.5 мм (ФТИ).

P-side Energy Spectrum

Спектр альфа частиц изотопа ²⁴ Am, полученный на уменьшенном прототипе спектрометрического двухстороннего стрипового детектора, показывающий достигнутое энергетическое разрешение около 14 кэВ (ФТИ).

Конструкция модуля с Si(Li) детектором, изготовленным в ПИЯФ (Д.М. Селиверстов, А.Х. Хусаинов).

Спектр альфа источника с триплетом линий, полученный на одном из сегментов изготовленного Si(Li) детектора (ПИЯФ).

R3B setup

Схематическое изображение установки эксперимента R3B.

Общий вид калориметра-спектрометра CALIFA (вид по пучку) (Дубна).

Total absorption efficiency	80 % (Εγ=15 MeV lab R3B) (Εγ=2-4 MeV lab EXL)	Very large crystals
Eγ sum	σ(E _{sum})/ <e<sub>sum> <10%</e<sub>	
γ Multiplicity	$\sigma(N_{\gamma})/ < 10\%$	
$\Delta E/E$ for γ	2-3 %	R(%)=5.15/√Eγ, MeV
$\Delta E/E$ for p (up to 300 MeV) Calorimeter for p	1 %	R(%)=5.1/ √Ep, MeV

R3B Calorimeter Demonstrator: 15 CsI(Tl) elements

Энергетическое разрешение CsI(TI)/ЛФ элементов для γ- излучения с энергией 0.57 – 2.50 МэВ.

На рисунке изображена также геометрия отдельного кристалла.

Энергетическое разрешение CsI(TI)/ФЭУ элементов объемом 1 см³ и 50 см³ для протонов в зависимости от их энергии.

NeuLAND – детектор быстрых нейтронов

LAND – Large Area Neutron Detector

Existing LAND detector: • $\sigma_t < 250 \text{ ps}$ • $\sigma_{x,y,z} \approx 3 \text{ cm}$ • Size: 2 x 2 x 1 m³ • Plastic scintillator / Fe Converter sandwich structure Th. Blaich *et al.*, NIM A **314** (1992), 136

Land efficiency

NeuLAND design goals:

- $\sigma_t < 100 \text{ ps}$
- σ_{x,y,z} ≈ 1 cm
 - Size : approx. 2 x 2 x 0.8 m³
 - Efficiency > 90% for 1-n hits
 - Improvement of multi-n recognition

Timing RPC concept:

- Total of 140 m² RPC
- Approx. 10'000 channels
- Converter material: integrated in RPC structure

Compared to existing RPC types:

- Low count rates (< 1 Hz/cm²)
- Massive detector for higher efficiency
- Protons at various energies (non-MIPs)

first test RPC – planned at GSI

detector size 20×40 cm² with 8 anode strips 2.4×40 cm² converter material integrated in the detector

MRPC prototype developed and built at FZD: stack of glass plates

Новый вариант детектора:

с использованием сцинтилляционных детекторов, но при этом без железного конвертора

Детектор состоит из пластин сцинтилляционного пластика с поперечными размерами – 5х5 см², всего 1600 пластин и 3200 ФЭУ (или 3х3 см², всего 4400 пластин и 8800 ФЭУ). Детектор имеет размер 2х2х2 м³.

ПИЯФ – детекторы для R3B и EXL.

Трековые детекторы для регистрации быстрых протонов и легких заряженных фрагментов в эксперименте R3B

ПИЯФ уже внес свой вклад в **R3B** – две дрейфовые камеры гексагональной структуры для регистрации протонов, размером **1.2x0.8 м**², со считывающей электроникой **CROS3**. Каждая камера имеет 2 слоя ячеек X, и два слоя Y. В настоящее время камеры успешно используются в эксперименте LAND.

Наши камеры – DCH1 и DCH2

ACTAR at R3B

Preliminary study of ¹³²Sn(p,p)¹³²Sn at 700 A.MeV

p,A elastic scattering scheme

- Cylinder with Be windows 500 um
- Beam shield d = 2 cm
- Beam tracking + vertex reconstruction
- Pressure P in the range 10 to 20 bar

How is it going to work?

90% helium 10% CO2 gas mixture Pressure of a few hundred mbar Drift voltage ~100V/cm

All tracks from a beam view intri-Ac049152c+07 1300 E 0.941 21.0 30.5 ≻₂₀₀ 200 100 150 100 -100 500 -200 -300 100 200 300 -200-100X [mm]

Cathode

Symmetry around the beam axis E // beam axis, uniform Projection on the endcap of the cylinder B // beam axis

Quantities to be measured:

Curvature radius, collected charge, range, angles. For 0.5 mm position resolution, $\Delta E/E=2\Delta R/R$, expected energy resolution≈100 keV for θ_{cm}>20°

First step: IKAR chamber

A correction on the energy lost in the central dead region

Запрос на финансирование для экспериментов NuStar

WBS	Вид работ	Исполнители	Запраши- ваемая сумма
1.2.5	R3B		
1.2.5.1.2.5	Нейтронный спектрометр (узлы)	ПИЯФ	1400 k€
1.2.5.1.2.3	Гамма спектрометр (узлы)	РНЦ КИ, ОИЯИ, РФЯЦ-ВНИИЭФ	1000 k €
1.2.5.2.3	Активная мишень (полностью)	ПИЯФ	1238 k€
1.2.9	EXL		
1.2.9.4.2	Нейтрон. спектрометр (полностью)	ПИЯФ	2800 k€
1.2.9.3.1.1	Кремниевые планарн. детекторы	ФТИ, ЗАО НИИМВ, ПИЯФ	5880 k€
1.2.9.3.1.1	Толстые Si Li-дрейф. детекторы	ПИЯФ	1000 k€
1.2.9.3.1.2	Электроника к детекторам	ФТИ, ЗАО НИИМВ	1500 k€
1.2.9.3.2	Гамма спектрометр (полностью)	РНЦ КИ, ОИЯИ, РФЯЦ-ВНИИЭФ	3626 k€
1.2.9.4.1	Трек. детект. (проп. камеры) (полн.)	ПИЯФ	224 к€
1.2.3	MATS		
1.2.3.6	Блок калибровки (полностью)	ПИЯФ	275 к€
1.2.3.8	<mark>Детекторы медлен. частиц</mark> (узлы)	ПИЯФ	174 к€
1.2.6	ILIMA		
1.2.6.5	Кремниевые детекторы (полн.)	ПИЯФ	210 к€
1.2.8	ELISe		
1.2.8.3	Монитор светимости (полностью)	РНЦ КИ, ИЯИ	45 к€
1.2.8.4	Детекторы LAHReS	ИЯИ	425 k€

Финансирование работ в России: 2008 г., 2009 г., 2010 г., 2011 г.?

Индия – 1.6 МЕвро, Британия – 6 МЕвро Испания – 0.5 МЕвро Германия ... Венгрия ... Португалия...

Россия - ?

Взнос – 10-20 кЕвро в год...