

τ**→3μ**

Present limit : $BR(\tau \rightarrow 3\mu) > 4.10^{-8}$ Is it possible to improve this limit in LHCb ? How much ?

nttps://twiki.cern.ch/twiki/bin/view/LHCb/SettingsDc06?sortcol=0;table=3;up=0#sorted_table

CROSS SECTIONS

Min.Bias $-\sigma_{tot}(pp) = 102.9 \text{ mb}$ - $\sigma_{incl}(bb) = 698 \mu b$ $\sigma_{incl}(cc) = 3643 \mu b$

BRANCHING RATIOS

 $\begin{array}{ll} Br(b \rightarrow \mu) incl = 10.7\% \\ Br(b \rightarrow \tau) incl = 2.9\% \\ Br(b \rightarrow D_s) incl = 21\% \\ Br(D_s \rightarrow \tau v) = 6.4\% \end{array}$

Ds PRODUCTION PROBABILITY FROM C

 $P(c \rightarrow D_s) = 0.11$

Main production channels

	Channel	Cross sections	
S 1	$b \rightarrow \tau$ (excluding b \rightarrow c $\rightarrow \tau$)	$\sigma 1 = \sigma incl(bb) \cdot 2 \cdot Br(b \rightarrow \tau) incl$	40 <i>µ</i> b
52	$b \rightarrow c \rightarrow \tau$ (cascade c-production)	$\sigma 2 = \sigma incl(bb) \cdot 2 \cdot Br(b \rightarrow Ds) \cdot Br(Ds \rightarrow \tau)$	19 <i>µ</i> Ь
53	c ightarrow au (direct c-production)	σ 3 ≈ σ 4	
54	$Ds \rightarrow \tau$ (from direct c-production)	$\sigma 4 = \sigma incl(cc) \cdot 2 \cdot P(c \rightarrow Ds) incl \cdot Br(Ds \rightarrow \tau)$	51 <i>µ</i> b
55	X ightarrow au (b&c excluding)		

Total $\sigma(\tau) = 110 \mu b$

We assume that the main source of background is inclusive $bb \rightarrow 2\mu$ events

Incl_b=DiMuon ~ 20M events

20M corresponds to luminosity = 3.9 pb⁻¹ (1/500 from the yield per year)

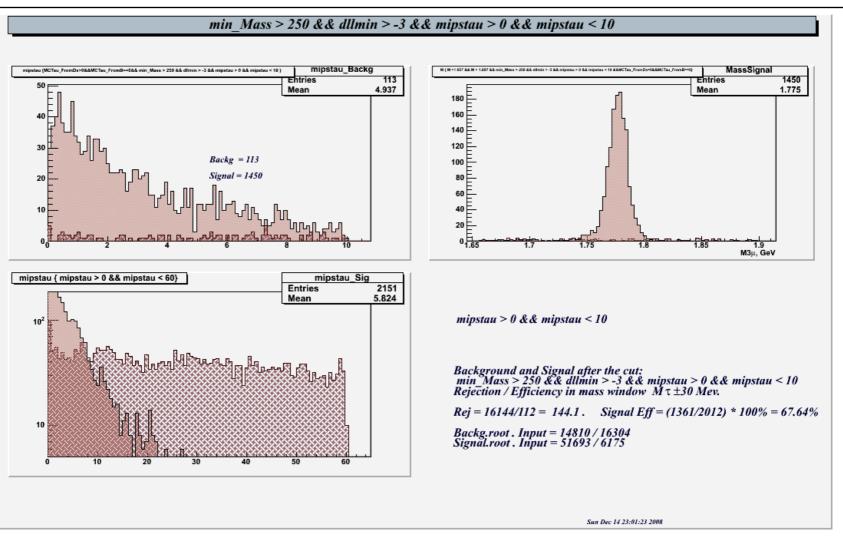
Signal events: DC06-phys-v2-lumi2 31113001 - $\tau \rightarrow 3\mu$ ~50k events

Ο_{tot}(τ) =110 μb

geometry LHCb acceptance $\epsilon_{acc_{3\mu}}$ = 27%

 τ yield per year in LHCb geometry acceptance (S1+S2+S3+S4 channels) N τ (total) = 110 μ b \cdot 2fb⁻¹ \cdot 0.27 = 5.9 \cdot 10¹⁰

However, separation of signals from background proved to be more effective for the Ds channel (S4-channel).


Registration efficiency in S4-channel = 2.65% Registration efficiency in S1&S2-channels ≈ 0.5 %

Therefore, our analysis was done mostly for S4-channel. $N\tau(Ds \rightarrow \tau) = 51\mu b \cdot 2fb^{-1} \cdot 0.27 = 2.7 \cdot 10^{10}$

If BR($\tau \rightarrow 3\mu$) = 10⁻⁸ then number of detected N($\tau \rightarrow 3\mu$) = = (2.65% · 2.7 · 10¹⁰+0.5% · 3.2 · 10¹⁰) · BR($\tau \rightarrow 3\mu$) = = **9 events per 2fb**⁻¹.

Backgound after stripping cuts Nbg = 16144

Ds sample with stripping cuts applied

Nsg = 2012

	Variable	Nbg	Nsg	Backg. Rej.	Signal Eff.[%]
1	Minmass(2µ) > 250 Mev	5976	2000	2.7	99.4
2	dLL (μ) > -3	1910	1620	8.5	80.5
3	0 <ips(τ) 10<="" <="" td=""><td>112</td><td>1361</td><td>144</td><td>67.7</td></ips(τ)>	112	1361	144	67.7
4	Cos(dira) > 0.99999	41	957	394	47.6
5	0.07 < tdot < 1.0	39	954	414	47.4
6	13GeV < maxP (μ) < 100GeV	31	845	521	42
7	0.3GeV < minPT (µ) < 5GeV	8	721	2018	35.8
8	LO	1	625	16144	31

Nbg – number of BG in mass window m_{τ} ±120 MeV

Nsg – number of signals in mass window m_{τ} ±30 MeV after BG subtraction

Backgound After stripping Nbg = 16144

Ds sample with stripping cuts applied Nsg = 2012

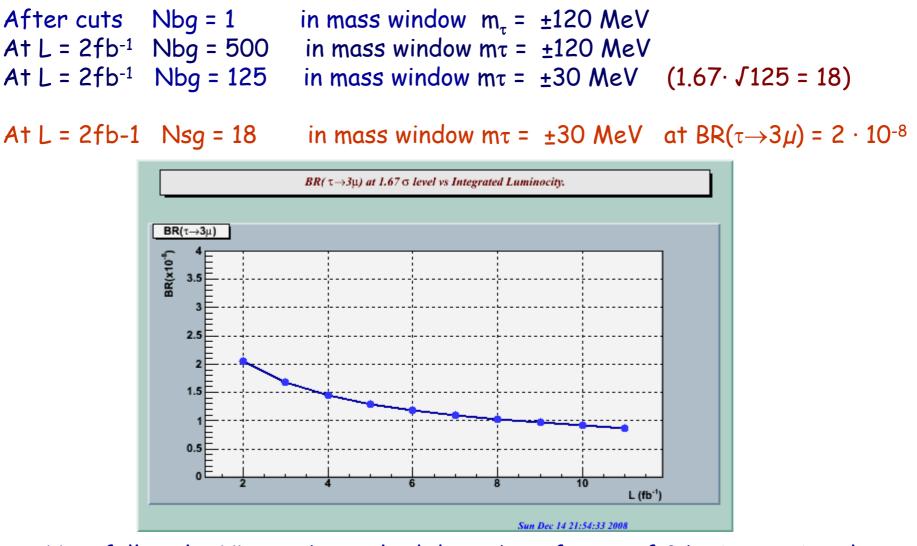
	Variable	Nbg	Nsg	Backg. Rej.	Signal Eff.[%]
1	Minmass(2µ) > 250 Mev	5976	2000	2.7	99.4
2	dLL (μ) > -3	1910	1620	8.5	80.5
3	$0.6 < IPS(\tau) < 10$	102	1163	158	57.8
4	Cos(dira) > 0.99999	31	770	521	38.3
5	0.07 < tdot < 1.0	30	768	538	38.2
6	13GeV < maxP (μ) < 100GeV	24	692	673	34.4
7	0.3GeV < minPT (µ) < 5GeV	2	585	8072	29.1
8	LO	0	506	8	25.2

Nbg – number of BG in mass window m_{τ} ±120 MeV

Nsg – number of signals in mass window m_τ ±30 MeV after BG subtraction

Background rejection and signal efficiency after all cuts applied.

	Nila	Signal efficiency		
	Nbg	S4 (Ds \rightarrow τ)	S1+S2	
A	1	2.65%	0.5%	
В	0	2.14%	0.4%	


Nbg - number of Bg events in mass window $m_{\tau} = \pm 120 \text{ MeV}$ Signal efficiency in $m_{\tau} = \pm 30 \text{ MeV}$

Hopefully, the efficiency could be increased by a factor of 2 optimizing the preselection cuts

Results

Hopefully, the UL can be pushed down by a factor of 2 by increasing the signal efficiency optimizing preselection cuts

The present analysis shows that at LHCb it might be possible to reach sensitivity up to $BR(\tau \rightarrow 3\mu) = 10^{-8}$ at L = 5-8 fb-1