Отчет о работе группы нуклон-ядерных взаимодействий

Состав группы

Вовченко В.Г. – в.н.с., д.ф.-м.н., - руководитель группы,

Ковалев А.И. B.B.Поляков Солякин Г.Е. Федоров О.Я. Честнов Ю.А. Траутман В.Ю. Шведчиков А.В. <u>Мурзин</u> ВИ Переверзев А.М. E.H.Черная

С.н.с., к.ф.м.н., с.н.с. ., к.ф.м.н., С.н.с. ., к.ф.м.н., С.н.с. ., к.ф.м.н., с.н.с. ., к.ф.м.н., H.C.H.C.в. ИНЖ. Эл. сл.м.-сб.р. СМ.Л.-И.

Основные направления работы

Исследование деления тяжелых ядер протонами промежуточных энергий Измерения и анализ энергетической и изотопической зависимостей полных сечений деления свинца, урана и других тяжелых ядер. Анализ корреляции в процессах расщепления ядер протонами.

Упругое нуклон-нуклонное рассеяние Фазовый анализ упругого *pp*-рассеяния. Работы с поляризованными и криогенными мишенями Участие в экспериментах других лабораторий

Деление тяжелых ядер протонами

- Анализ энергетической зависимости сечений деления актинидов в широкой области энергий (50-10 000 МэВ).
- Анализ изотопической зависимости полных сечений деления тяжелых ядер протонами и зависимости от параметра Z² / А в диапазоне энергий 200–1000 МэВ.
- Исследование каналов деления в области 50-10 000 МэВ.

Энергетическая зависимость сечений деления актинидов

Энергия протонов, ГэВ

Ю. А. Честнов. // ЯФ 71, №12, с. 2052–2063 (2008).

Энергетическая зависимость полных сечений *pp*взаимодействия: *O*tot и *O*in

Схема экспериментальной установки Измерение сечений: ¹⁹⁷Au, ^{206,207,208}Pb, ²³⁸U

- 1 камера,
 наполненная гептаном;
- 2 входное окно;
- > 3 − ППЛС;
- ▶ 4 мишень;
- S1-S3, C1-C3 сцинтилляционные счетчики

Энергетическая зависимость сечений деления изотопов свинца и золота

$$\sigma_{\rm f} = \sigma_{\rm i} - A_{\rm i} \cdot \exp(-Ep/t_{\rm i})$$

Изотопические зависимости сечений деления ядер урана и свинца протонами

Резюме

- Сечения деления уменьшаются по мере уменьшения параметра делимости Z²/A ядра мишени.
- ▶ Сечения деления изотопов урана возрастает на (3±1)% при уменьшении массы ядра на 1 нейтрон. Для изотопов свинца возрастание составляет ≈20% при уменьшении массы ядра на один нейтрон.

Фазовый анализ упругого *pp*-рассеяния

- Необходимы независимые программы для обработки данных по нуклон-нуклонному рассеянию с помощью ПК.
- Необходимо учитывать новые экспериментальные данные (наши результаты по Кпп или COSY).
- Основой послужила программа Ф.А., созданная И.Н.
 Силиным и Ю.М. Казариновым, которая использовалась при анализе поляризационных параметров *pp*-рассеяния.

. Реальные части фазовых сдвигов S-P-D-F-состояний.

Мнимые части фазовых сдвигов состояний: S-P-D-F..

Io, Ри Аnn при энергии 1.0 ГэВ. Наш анализ – сплошная линия, [13]- пунктир.

 экспериментальные данные: темные кружки- ПИЯФ, светлые кружкидругие данные.

Параметры «тройного» рассеяния при энергии 1 ГэВ

Dnn (Knn)

 Наш анализ – сплошная линия, точечная линия – Arndt...[13];
 экспериментальные данные ПИЯФ – темные кружки, другие данные – светлые кружки.

Исследование эффектов несохранения четности

- Участники: Ковалёв А.И., Мурзин В.И., Траутман В.Ю., Шведчиков А.В.
- Основные темы: 1. Взаимодействие поляризованных нейтронов с поляризованными ядрами ¹³⁹La. 2. Измерение поляризации γ-квантов от распада в результате внутренней конверсии электронов изомеров поляризованных ядер ¹⁸⁰Hf и ¹¹⁹Sn.
- Задачи Группы: 1. Работы по модернизации установки ядерных поляризованных мишеней. 2. Разработка и создание электронной системы управления элементами контроля температуры и нагревателями камеры растворения.
 3. Проведение криогенных испытаний.

Работы 2008 г.

 Продолжались работы по сборке рефрижератора растворения для исследований на поляризованных ядрах: устранены некоторые конструктивные недостатки, переделаны вводы гелия-3 и гелия-4 в корпус рефрижератора, установлен новый фильтр на вводе гелия-3, проверены холодные испытания на вакуум теплообменников.

Рефрижератор растворения ЗНе / 4Не

Участие сотрудников группы в работах Отделения Ф В Э

- Исследование влияния ядерной среды на характеристики NN-взаимодействия при энергии 1 ГэВ (лаборатория малонуклонных систем): Мурзин В.И., Переверзев А.М., Фёдоров О.Я., Шведчиков А.В., Ковалев А.И., Траутман В.Ю.
- Исследование рассеяния пионов на водороде (лаборатория мезонной физики): Ковалев А.И., Траутман В.Ю., Шведчиков А.В.
- Проект ALICE: Поляков В.В.
- Проект МНТЦ-3192.

Публикации

- 1 статья(ЯФ) + 3 статьи в трудах конференций
- 4 препринта
- 3 выступления на семинарах ОФВЭ

Программы работы на 2009г.

- Создать пучок нейтронов с энергией 400-900 МэВ на направлении синхроциклотрона ТР-1 для измерения сечений деления изотопов урана нейтронами.
- Завершить измерения энергетической зависимости сечений деления ядер: ¹⁹⁷Au, ²⁰⁵Tl, ²⁰⁷Pb, ²⁰⁸Pb протонами с энергией 200÷1000 МэВ и провести анализ энергетической зависимостей сечений деления изотопов свинца и урана и делимости для ядер от ¹⁹⁷Au до ²³⁹Pu.
- Продолжить анализ механизма двухтельного и трехтельного деления тяжелых ядер.
- Провести модернизацию измерительной системы поляризованной мишени. Провести пробный сеанс.

Схема вывода пучков в экспериментальный зал синхроциклотрона

Возможность создания пучка нейтронов с энергией 400-900 МэВ

• Направление нейтронного пучка- TP-1.

- ▶ Телесный угол системы регистрации: (1.25 ÷2) ·10⁻⁵ стер.
- Протонный пучок: 10¹² пр/сек; мишень: Ве или Си 10см; угол вылета нейтронов: 7-8°.
- Энергия нейтронов: E_n>400 МэВ; интенсивность : (2÷4)·10⁴.
- Мишени: изотопы урана, (возможно)- изотопы плутония.

Спектрометр осколков деления по времени пролета

Масса осколка деления
 будет определяться
 путем измерения
 кинетической энергии и
 времени пролета
 осколка между
 стартовым и стоповым
 детекторами.

Nuclear reaction	n _c	% of total statistics	$oldsymbol{ heta}_{mp}$	S	exp(-2S)
²⁵² Cf (sf)	0	99.6	0.8 ⁰	5130	1.4x10 ⁻⁴⁴⁵⁶
²³⁸ U + 1 GeV proton	≥ 6	2.8 ± 0.3	(17.3 ± 2) ⁰	10.8 ± 2.5	4.2x10 ⁻¹⁰

