

Ю. Нарышкин

High Energy Storage Ring

Parameters of HESR

- Injection of at 3.8 GeV/c
- Momentum range (1.5-14.5 GeV/c)
- Storage ring for internal target operation
 - Luminosity up to L~ $2x10^{32}$ cm⁻²s⁻¹
 - Beam cooling (stochastic & electron)

High luminosity mode: $L = 2x10^{32}$ [cm⁻²s⁻¹], $\sigma_p/p \sim 10^{-4}$ High resolution mode: $L = 2x10^{31}$ [cm⁻²s⁻¹], $\sigma_p/p \le 2 \cdot 10^{-5}$

Основные пункты физической программы эксперимента

Charmonium (cc-bar) Spectroscopy

Unprecedented precise measurements of masses, widths and BR

Exotic states

. . .

 $\begin{array}{ll} \textbf{Glueballs (gg)} & \underline{pp} \rightarrow f_2(2000 - 2500) \rightarrow \phi\phi \\ \textbf{Hybrids (gqq-bar)} & \overline{pp} \rightarrow \left[\overline{\eta}_{c0,1,2}, \overline{\lambda}_{c1} \right] \eta \rightarrow DD^*\eta \end{array}$

Nucleon Structure

Proton time-like form factors $p \to e^+e^-$

Hyperon production and polarization $pp \to \overline{\Lambda}\Lambda, pp \to \overline{\Xi}\Xi$

Nuclear Physics: Strangeness Sector Double Hypernuclei production via Ξ^- *capture* $pp \rightarrow \Xi^+ \Xi^-$

(SiPM для боковых стенок ВПД. European grant FP7)

Идентификация частиц в переднем спектрометре

- ВПД хорошо разделяет пионы от каонов до импульсов 3 Гэв/с каоны от протонов до импульсов 4 Гэв/с
- ЯІСН (HERMES) хорошо идентифицирует пионы начиная с импульса 2 Гэв/с, протоны с импульса 4 Гэв/с и каоны с импульса 3Гэв/с
- Идентификация адронов во всем импульсном интервале полностью обеспечивается комбинацией ВПД/RICH

Монте-Карло моделирование р_{beam}=15 Гэв/с

Mass reconstruction

no magnetic field used in simulation (track is assumed to be a straight line)

Эффективное разделение пионов от каонов возможно до импульса частиц 3 Гэв/с, а разделение каонов от протонов до импульса 4 GeV/с Ю. Нарышкин, Научная сессия ОФВЭ, 24 Декабря 2008 г.

Загрузки переднего спектрометра при различных значениях

импульса частиц пучка

Загрузки рассчины при светимости 2•10³² см²/с

Количество генерированных событий

Импульс пучка <i>(GeV/c)</i>	σ _{tot} (mbarn)	4π rates (1/sec)	π± (1/sec)	K± (1/sec)	Proton (1/sec)	Pbar (1/sec) <mark>(elastic)</mark>
2	90	1.8•10 ⁷	7.17•10 ⁶	6.47•10 ⁴	2.23•10 ⁶	2.25•10 ⁶ (1.69•10 ⁶)
5	64.8	1.3•10 ⁷	5.4•10 ⁶	6•10 ⁴	1.37•10 ⁶	1.36•10 ⁶ (6.94•10 ⁵)
15	50.8	1•10 ⁷	4.15•10 ⁶	1.48•10 ⁵	9.16•10 ^₅	9.18•10 ⁵ (3.21•10 ⁵)

Загрузки переднего спектрометра

Импульс пучка <i>(GeV/c)</i>	Forward rates (1/sec)	π± (1/sec)	K± (1/sec)	Proton (1/sec)	Pbar (1/sec) <mark>(elastic)</mark>
2	1.8•10 ⁶	3.9•10 ⁵	2•10 ³	1.2•10 ⁴	1.07•10 ⁶ (1•10 ⁶)
5	2.17•10 ⁶	6•10 ⁵	7.8•10 ³	3.8•10 ⁴	9.5•10 ⁵ (6.75•10 ⁵)
15	2.93•10 ⁶	9.56•10 ⁵	4.7•10 ⁴	3.2•10 ⁴	8.2•10 ⁵ (3.22•10 ⁵)

Загрузки передней стенки ВПД при импульсе пучка 15 Гэв/с

Шаг гистограммы выбран равным ширине центральных пластин (5 см)

Источники фоновой загрузки

рождение частиц на стенках вакуумного тракта
регистрация γ квантов от распада (π⁰→γγ) в сцинтилляторах
рассеяние пучка на остаточном газе
рассеяние частиц гало пучка

Вакуумная система в области мишени

- Все компоненты изготовлены из Ті
- Толщина труб маленького диаметра (20 мм) и конуса равны 200 μm
- Толщина труб большого диаметра (64,110 мм) равна 500 μт

Примеры фоновых событий

Рождение е+е- пар на трубах вакуумного тракта

Рождение адронов на трубах вакуумного тракта

Загрузки передней стенки ВПД при импульсе пучка 15 Гэв/с

Загрузки рассчины при светимости 2•10³² см²/с

Шаг гистограммы выбран равным ширине центральных пластин (5 см) все заряженные частицы

заряженные частицы образованные при взаимодействии в трубах вакуумного тракта

е⁺е⁻ пары рожденные γ -квантом от распада ($\pi^0 \rightarrow \gamma \gamma$) в трубах вакуумного тракта

е+е- пары рожденные γ-квантом в сцинтилляторе ВПД

Тестова я станция (прототип)

10x12x12 MM³

ФЭУ R4998

1. FD (С.Волков) 2. CFD (В.Соловей)

> Computer, data analysis ntuple ⊿*t, q1, q2*

Crystall + PMT + electronics = 64.5 ps PMT + electronics = 64 ps electronics = 20 ps PMT(2)= 61 ps PMT(1)= 42 ps

Тестова я станция

Ближайшие планы

Монте-Карло моделирование:

- Продолжение работ по моделированию фоновой загрузки детектора с целью выработрки рекомендаций для конструкции вакуумного тракта.
- Продолжение моделирования процессов распространения и поглощения света в материале сцинтиллятора и световодов с целью оптимизации их размеров и формы.
- Математическое моделирование способности ВПД (совместно с RICH и другими детекторами) обеспечить надежную идентификацию адронов (пионов, каонов, протонов, анти-протонов) в широком интервале импульсов; моделирование различных физических каналов, например:

 $pp \to \overline{\Lambda}\Lambda, \ pp \to \overline{\Lambda_c}\Lambda_c, \ pp \to \overline{\Omega}\Omega$

Создание прототипа детектора:

- создание тестовой станции для экспериментального исследования характеристик сцинтилляционного детектора. На основании проведенных выше рассчетов разработка прототипов ВПД. Требуется электроника обладающая высоким временным разрешением!
- Разработка TDR для ВПД, его защита в 2009 году.
- Испытания на пучке

Back up slides

Загрузки передней стенки ВПД при импульсе пучка 15 Гэв/с

Загрузки рассчины при светимости 2•10³² см²/с

Шаг гистограммы выбран равным ширине центральных пластин (5 см) все заряженные частицы

заряженные частицы образованные при взаимодействии в трубах вакуумного тракта

е⁺е⁻ рожденные γ от распада ($\pi^0 \rightarrow \gamma \gamma$) в трубах вакуумного тракта

Рождение фотоном е⁺е⁻ пар в Сцинтилляторе ВПД

> PANDA @ (p-bar,p) 15 GeV LHC @ (p,p) 7 TeV