ОТДЕЛ ТРЕКОВЫХ ДЕТЕКТОРОВ ОФВЭ ПИЯФ

А.Г.Крившич

24 декабря 2008 г.

Состав отдела	
Научных сотрудников	- 5 чел.
Стажер – исследователь	- 1 чел.
Ведущих инженеров	- 3 чел.
Инженеров	- 1 чел.
Рабочих	- 4 чел.
Студентов	- 1 чел.

- 1. Measurement of the total pp cross-section.
- 2. Study of elastic proton scattering over a wide range in momentum transfer up to (- t) \approx 10GeV²
- 3. Measurement of the inelastic pp interaction in the forward region.

The TOTEM Detectors

General Structure and Chamber Design

- Each plane made up of 6 independent trapezoidal CSC:
 - overlapping edges to have complete azimuthal coverage;
 - planes slightly rotated with respect to each other

□ Two symmetric arms, each with five planes of multi-wire proportional chambers with cathode strip read-out (CSC)

split in two half-arms,
independently sliding on the
support structure

Total number of wires per half-arm: ~ 2500 Total number of strips (both views) per half-arm: ~ 4050

CSC production status

Chamber production at PNPI

Test set-up with temporary sealed chamber

ЦЕРН. Четверть ТОТЕМ телескопа: CSC камеры с readout электроникой.

ЦЕРН. Cathode strip readout electronics for TOTEM CSC chambers.

Состояние дел с обязательствами ПИЯФ

в проекте ТОТЕМ

50 СSC уже находятся в ЦЕРНе.

10 СЅС еще надо будет сделать в начале 2009 года.

Монтаж и установка телескопов Т1 (право/лево) в шахте намечены на февраль май 2009 года.

Рабочие экземпляры детекторов тепловых нейтронов

Тестовые физические результаты

2D координатное распределение, полученное на фторопласте (3мм). Наблюдается рассеяние нейтронов на угол α≈32°.

3D координатное распределение, полученное на фторопласте (3мм). Наблюдается рассеяние нейтронов на угол α≈32°.

2D координатное распределение, полученное на растянутой в горизонтальном направлении фторопластовой пленке (толщина 0,3мм). Наблюдается выделенное по направлению рассеяние нейтронов. В ПИЯФ РАН разработана технология создания 2D-детекторов тепловых нейтронов.

На ее основе созданы и успешно испытаны детекторы с апертурой входного окна 200*200мм и 300*300мм.

Детекторы можно реально использовать в эксперименте. Старение детекторов частиц в интенсивных радиационных полях

Методы исследования:

- 1. Мониторирование КГУ.
- 2. Структура поверхности электронный микроскоп.

3. Количественное распределение элементов как вдоль поверхности, так и в ее глубину – метод Ядерных Реакций.

Новый эффект. При КГУ=100 000 проволочка старится почти в 2 раза медленнее, чем при КГУ=50 000.

А казалось бы все должно быть наоборот.

Новый эффект. Активные радикалы распространяются далеко за пределы зоны облучения, вызывая там выход вольфрамо-содержащих соединений на поверхность проволочки изнутри.

Новый эффект. Самовосстановление состарившейся проволочки после облучения.

Самолечение заканчивается примерно через 150-200 часов

Ключевые публикации 2008 года.

Nuclear Instruments and Methods	- 2.
Известия РАН. Физическая серия.	- 1.
Физика твердого тела (принята к публикации)	- 1.
Препринт ПИЯФ	- 1.
Выступления на конференциях и семинарах	- 5.
	Nuclear Instruments and Methods Известия РАН. Физическая серия. Физика твердого тела (принята к публикации) Препринт ПИЯФ Выступления на конференциях и семинарах

