Лаборатория релятивистской ядерной физики в 2006 году ОФВЭ, ПИЯФ РАН

В. Самсонов •ALICE-2006 (CERN, Швейцария)

27 декабря 2006

2

TIT

Мюонный спектрометр

ПИЯФ в эксперименте ALICE

• Участие в создании мюонного спектрометра:

Ø Трековой системы - станции 3,4,5

- разработка и изготовление технологического и контрольного оборудования для сборки модулей камер
- производство ¼ части всех модулей
- тестирование модулей в ЦЕРН перед установкой в экспериментальный зал
- сборка камер и эксплуатация в сеансах
- Ø Проектирование мюонного фильтра
- Ø Проектирование суперструктуры (конструкций закрепления камер на детекторе)
- Обоснование и моделирование условий для измерений выхода J/ψ и Y при ультрапериферических столкновениях ядер
- Обоснование и моделирование условий для измерений степени поляризации J/ψ
- Участие в обработке экспериментальных данных после запуска

Разработка и изготовление технологического и контрольного оборудования для сборки модулей камер

Изготовление модулей для трековых станций 3-4-5 мюонного спектрометра

Slat Production at PNPI: Planning

	Clatt readed			<u></u>		
No	Туре	Start	Assemble	Tested	Station	Plan
1	333000_GAT_01				4	
2	333000_GAT_02				4	
3	333000_GAT_03				4	
4	333000_GAT_04				4	
5	333000_GAT_05				4	
6	333000_GAT_06				4	
7	333000_GAT_07				4	
8	333000_GAT_08				4	Nov 2004
9	333000_GAT_09				5	
10	333000_GAT_10				5	
11	333000_GAT_11	17-Jan	25-Jan	28-Jan	5	
12	333000_GAT_12	25-Jan	2-Feb	7-Feb	5	
13	333000_GAT_13	2-Feb	14-Feb	18-Feb	5	
14	333000_GAT_14	15-Feb	28_feb	4-Mar	5	
15	333000_GAT_15	1-Mar	14-Mar	18-Mar	5	
16	333000_GAT_16	15-Mar	25-Mar	31-Mar	5	
17	333300_GAT_01	28-Mar	7-Apr	13-Apr	5	
18	333300_GAT_02	8-Apr	20-Apr	26-Apr	5	
19	333300_GAT_03	21-Apr	5-May	12-May	5	
20	333300_GAT_04	6-May	19-May	25-May	5	
21	112233_GAT_01	20-May	1-Jun	7-Jun	5	
22	112233_GAT_02	2-Jun	15-Jun	21-Jun	5	
23	112233_GAT_03	16-Jun	28-Jun	4-Jul	5	
24	112233_GAT_04	29-Jun	11-Jul	15-Jul	5	
25	112233_GAT_05	12Jul	22-Jul	28-Jul	5	
26	112233_GAT_06	25Jul	4-Aug	10-Aug	5	
27	112233_GAT_07	5-Aug	17-Aug	23-Aug	5	
28	112233_GAT_08	18-Aug	30-Aug	5-Sep	5	July 2005
29	220000_GAT_01	31-Aug	12-Sep	16-Sep	3	
30	220000_GAT_02	13-Sep	23-Sep	29-Sep	3	
31	220000_GAT_03	26-Sep	6-Oct	12-Oct	3	
32	220000_GAT_04	7-Oct	19-Oct	25-Oct	3	
33	220000_GAT_05	20-Oct	1-Nov	8-Nov	3	
34	220000_GAT_06	2-Nov	15-Nov	21-Nov	3	
35	220000_GAT_07	16-Nov	28-Nov	2-Dec	3	
36	220000_GAT_08	29-Nov	9-Dec	16-Dec	3	Nov 2005
37	333000_GAT_17	13_Dec	23-Dec	29-Dec	Spare	
38	333000_GAT_18	26_Dec			Spare	
39	333300_GAT_05				Spare	
40	112233_GAT_09				Spare	Feb 2006
41	220000_GAT_09				Spare	

Трековые камеры для мюонного спектрометра: ПИЯФ успешно завершил производство

Камеры отправлены в ЦЕРН и монтируются Май'06

Мюонные камеры: Тестирование и сборка в ЦЕРН

Обязательства ПИЯФ – участие в производстве трековых камер для мюонного плеча успешно выполнены: камеры перевезены в ЦЕРН и проходят испытания и установку

Июнь'06

STATION 5 CHAMBER 9 LEFT - *OUTSIDE*

Пример расположения слатов на полуплоскости САС - Кальяри GAT - Гатчина NAN - Нант SAC - Сакле

Команда принимает активное участие в тестировании, сборке и отладке камер. The second

The second second second second

650506

Установка трековой полуплоскости в пещере детектора ALICE

Станция 4 в исходной позиции

Суперструктура поддержки трековых камер

Подводы служб к камерам (газ, низкое.высокое напряжение, DAQ)

Наиль Мифтахов обеспечивает геодезическую привязку детекторов (по 3-летнему контракту)

Июль'06

Да, нелегкая ж это работа... (фотограмметрия)

Текущие проблемы

¹ ТОГ выступает из магнита L3 почти на 40 см!

Orsay – у квадранта #9 за лето порвалось ~40% проволочек, значительное количество - с ослабленным натяжением.

- 1 2000 нестандартных болтов из крепления абсорбера и первых станций оказались ферромагнитными – надо менятью
- ¹ Индусы: натяжение 65+-5 г, предел текучести -75 г! Решили, что сейчас самое время ставить поддержки(?!)
- · Ожидается ощутимая вибрация от вентиляторов.
- ¹ Обнаружено несколько случаев монтажа MANASoв из разных партий с разным усилением) иа одну карту MANU.
- Проблемы со слатами (неправильная сборка, искрение, невозможность чтения).
 - Пока ни один слат производства ПИЯФ (серия GAT) не имел серьезных проблем.

Протяжка кабелей

Июль'06

Еще раз протяжка кабелей:

Е. Окунев с дубненским коллегой на магните ALICE.

Физика

Представлена к публикации нота "Измерение натяжения проволок в трековых камерах мюонного спектрометра ALICE ".

 Представлен доклад на 3-ем совещании DimuonNet (Alessandria, March 29-31, 2006) на тему "Исследования поляризации кваркониев на ALICE " (Е. Крышень).
 Е. Крышень, "Зависимость аксептанса ALICE от количества и положения супермодулей TRD" – доклад на митинге PWG-3, 18 апреля, 2006.

Vector meson photoproduction in UPC at LHC

L. Frankfurt (TAU), M. Strikman(PSU), **M. Zhalov(PNPI)**. 21pp. Published in **Phys.Lett.B640:162-169,2006**

• "Large t diffractive rho-meson photoproduction with target dissociation in ultraperipheral pA and AA collisions at LHC."

L. Frankfurt(TAU), M. Strikman(PSU), M. Zhalov(PNPI) Dec 2006. 25pp.

e-Print Archive: hep-ph/0612072

Ультрапериферические взаимодействия @ ALICE

Написаны главы, посвященные фоторождению тяжелых кваркониев в следующие документы :

- ALICE Physical Performance Report, глава 6 (published. Eur.J. of Physics.)
- Ultraperipheral interactions at LHC Yellow Report :will be published in the beginning of 2007 (Eur. J. of Physics.)

Coherent photoproduction of quarkonia in ultraperipheral pA collisions

Measuring the cross section which is proportional to the gluon density squared one can study gluon density at small x

Плотность глюонов с малыми х – ключевой параметр в физике сильных взаимодействий при высоких энергиях, в частности, в центральных взаимодействиях тяжелых ионов на LHC. На RHIC: dN/dy ~1000 глюонов.

Когерентное фоторождение J/psi в p-Pb столкновениях

Начата работа по симуляциям процесса когерентного фоторождения при р-А столкновениях (теоретические оценки М. Жалова). Написан генератор в рамках системы AliRoot(B.Никулин)

Монте-Карло симуляции (AliRoot) для PbPb->PbPb J/ψ -разумные

скорости счета и отношения сигнал/фон: ~20,000 J/ ψ соб. за 10⁶ сек

Основная проблема - выбор триггера нулевого уровня (ZDC приходит слишком поздно). Возможности:

- Димюонный триггер
- Димюонный триггер + вето от PHOS или ECAL (если удастся)

Измерение поляризации Ј/ψ в ALICE

ПИЯФ предложил исследовать вопрос о возможности измерения поляризации кваркония в эксперименте ALICE как в p-p, так и в Pb-Pb столкновениях.

Установка ALICE рассчитана на регистрацию кваркония в диэлектронном и димюонном каналах с хорошим аксептансом, что позволит набрать необходимую статистику для изучения поляризации.

Этим начал заниматься Е.Крышень (студент 6 к. СПбГПУ)

Измерение поляризации Ј/ψ

Угловое распределение мюонных пар Ј/ψ в системе покоя:

 $I(\cos \theta^*) \sim 1 + \lambda \cos^2 \theta^*$

- *q*^{*}- угол, между импульсом лептона в системе покоя J/ψ и импульсом J/ψ
- $\lambda = 0$ отсутствие поляризации $\lambda = 1 -$ поперечная поляризация $\lambda = -1 -$ продольная поляризация

Измерение поляризации Ј/ф

•Измерения поляризации чармония в протон-антипротонных столкновениях в Фермилабе показывают рост поперечной поляризации при больших поперечных импульсах (> 5 ГэВ/с) в соответствии с обычно используемой моделью в рамках нерелятивистской КХД (NRQCD). Однако при очень больших поперечных импульсах (> 12 ГэВ/с), поляризация уменьшается и даже становится продольной.

•Кроме того, эксперимент Fermilab E866/NuSea обнаружил продольную поляризацию чармония в протон-ядерных столкновениях, что пока не удалось объяснить в рамках NRQCD.

Модели:

- СЕМ, СЅМ отсутствие поляризации
- NRQCD поляризация при p_t > 6 ГэВ/с (Braaten et al.)
- Ioffe and Kharzeev, PR,C68:061902, 2003: поперечная поляризация (~0.35-0.40) при малых р_t
- Khoze, Martin, Ryskin, and Stirling, Eur.Phys.J. C39:163-171, 2005: поперечная поляризация при малых p_t и продольная при больших p_t

J/ψ polarization in p+pbar @ 1.8 TeV, CDF

Предварительные результаты PHENIX

Будущие измерения поляризации чармония на RHIC помогут понять механизм образования чармония. В настоящее время измерения поляризации на PHENIXe имеют очень большую статистическую погрешность, которая не позволяет сделать определенных выводов. Ситуация улучшится, когда RHIC будет работать с более высокой светимостью.

Зависимость аксептанса TRD от числа и положения супермодулей Возможность 1: 2 плеча TRD в противоположных направлениях

- Интегральный аксептанс: 0.08%
- Хорошее покрытие на малых р_t
- зазор при $p_t \sim M_{J/\psi}$

9

Планы на 2007 год

Принять участие в сборке, испытаниях и подготовке к
 эксперименту трековых камер мюонного плеча

1 Принять участие в первых измерениях на LHC

Подготовить программное обеспечение для анализа ультрапериферических Pb-Pb столкновений, сделать оценки для p-Pb/Pb-р столкновений.

Развивать программное обеспечение для анализа поляризации J/psi

Рассмотреть возможность изучения рождения J/psi при распаде В-мезона

 Продолжить техническую деятельность (геодезия, протяжка кабелей)

Спасибо за внимание

Что мы исследуем?

Исследуем состояния ядерной материи в экстремальных условиях по температуре и плотности:

 О Современная теория QCD предсказывает много необычных свойств у такой материи (см. диаграмму)
 Важно для понимания эволюции Вселенной и состояния вещества в звездах

Full size (2400 mm) slat prototype on T10 beam line

LHC planning

- Year 1
 - pp detector commissioning & physics data and PbPb : global observables physics
- Year 2 (similar to Year 4)
 - pp physics & baseline and PbPb @ nominal luminosity for rare probes (i.e. ~9000 Upsilons)
- Year 3
 - pPb (or dPb, αPb) nuclear modification of parton distributions
- Year 5
 - ArAr system

Поляризация: Основные определения

В большинстве экспериментов предполагается плоское распределение по углу и полное сечение измеряется как функция соз *θ*:

$$\frac{d\sigma}{d\cos\theta} \sim 1 + \alpha\cos^2\theta$$

 $\alpha = 0$ – нет поляризации $\alpha > 0$ – Поперечная поляризация $\alpha < 0$ – Продольная поляризация

C. S. Lam and W.-K. Tung, Phys. Rev. D 18, 2447 (1978)

Поляризация: системы отсчета

Угловое распределение продуктов распада зависит от выбора оси поляризации (z). Имеются разные возможности:

- Система координат Готфрида-Джексона
- Система координат Коллинза-Сопера –обычно используется в экспериментах с фиксированной мишенью
- Система координат спиральности обычно используется в коллайдерных экспериментах (Ср. ВаВаг, etc.)

Система координат спиральности (отдачи): Ось Z совпадает с направлением J/ψ в системе центра масс

- Все системы отсчета эквивалентны для J/ψ с $p_t = 0$
- При сравнении результатов измерений с теоретическими предсказаниями надо

быть очень осторожным

Восстановленные распределения соз θ vs p_t

 Распределения по инвариантной массе были восстановлены в ячейках по р_t и cos

• Угловые распределения в бинах по p_t были скорректированы на аксептанс и

COS Ĥ

- неопределенность реконструкции α ~ 0.02 ÷ 0.05
- неопределенность α не очень
 чувствительна к статистике J/psi (если она

достаточно велика)

диапазон р _t ,	Восстановленная
GeV/c	α
1 ÷ 2	-1.016 ± 0.035
2 ÷ 4	-0.967 ± 0.025
4 ÷ 6	-1.002 ± 0.021
6 ÷ 8	-0.999 ± 0.030
8 ÷ 10	-0.978 ± 0.047