Лаборатория релятивистской ядерной физики в 2005 году ОФВЭ, ПИЯФ РАН

В. Самсонов •ALICE-2005 (CERN, Швейцария) •CBM-2005 (GSI,Германия) 29 декабря 2005

Мюонный спектрометр

ПИЯФ в эксперименте ALICE

• Участие в создании мюонного спектрометра:

Ø Трековой системы - станции 3,4,5

- разработка и изготовление технологического и контрольного оборудования для сборки модулей камер
- производство ¼ части всех модулей
- тестирование модулей в ЦЕРН перед установкой в экспериментальный зал
- сборка камер и эксплуатация в сеансах
- Ø Проектирование мюонного фильтра
- Ø Проектирование суперструктуры (конструкций закрепления камер на детекторе)
- Обоснование и моделирование условий для измерений эффектов при ультрапериферических столкновениях ядер
- Обоснование и моделирование условий для измерений степени поляризации J/ψ
- Участие в обработке экспериментальных данных после запуска

Разработка и изготовление технологического и контрольного оборудования для сборки модулей камер

Изготовление модулей для трековых станций 3-4-5 мюонного спектрометра

Slat Production at PNPI: Planning

	Clatticadou			<u></u>		
No	Туре	Start	Assemble	Tested	Station	Plan
1	333000_GAT_01				4	
2	333000_GAT_02				4	
3	333000_GAT_03				4	
4	333000_GAT_04				4	
5	333000_GAT_05				4	
6	333000_GAT_06				4	
7	333000_GAT_07				4	
8	333000_GAT_08				4	Nov 2004
9	333000_GAT_09				5	
10	333000_GAT_10				5	
11	333000_GAT_11	17-Jan	25-Jan	28-Jan	5	
12	333000_GAT_12	25-Jan	2-Feb	7-Feb	5	
13	333000_GAT_13	2-Feb	14-Feb	18-Feb	5	
14	333000_GAT_14	15-Feb	28_feb	4-Mar	5	
15	333000_GAT_15	1-Mar	14-Mar	18-Mar	5	
16	333000_GAT_16	15-Mar	25-Mar	31-Mar	5	
17	333300_GAT_01	28-Mar	7-Apr	13-Apr	5	
18	333300_GAT_02	8-Apr	20-Apr	26-Apr	5	
19	333300_GAT_03	21-Apr	5-May	12-May	5	
20	333300_GAT_04	6-May	19-May	25-May	5	
21	112233_GAT_01	20-May	1-Jun	7-Jun	5	
22	112233_GAT_02	2-Jun	15-Jun	21-Jun	5	
23	112233 GAT 03	16-Jun	28-Jun	4-Jul	5	
24	112233_GAT_04	29-Jun	11-Jul	15-Jul	5	
25	112233_GAT_05	12Jul	22-Jul	28-Jul	5	
26	112233_GAT_06	25Jul	4-Aug	10-Aug	5	
27	112233_GAT_07	5-Aug	17-Aug	23-Aug	5	
28	112233_GAT_08	18-Aug	30-Aug	5-Sep	5	July 2005
29	220000_GAT_01	31-Aug	12-Sep	16-Sep	3	
30	220000_GAT_02	13-Sep	23-Sep	29-Sep	3	
31	220000_GAT_03	26-Sep	6-Oct	12-Oct	3	
32	220000_GAT_04	7-Oct	19-Oct	25-Oct	3	
33	220000_GAT_05	20-Oct	1-Nov	8-Nov	3	
34	220000_GAT_06	2-Nov	15-Nov	21-Nov	3	
35	220000_GAT_07	16-Nov	28-Nov	2-Dec	3	
36	220000_GAT_08	29-Nov	9-Dec	16-Dec	3	Nov 2005
37	333000_GAT_17	13_Dec	23-Dec	29-Dec	Spare	
38	333000_GAT_18	26_Dec			Spare	
39	333300_GAT_05				Spare	
40	112233_GAT_09				Spare	Feb 2006
41	220000_GAT_09				Spare	

PNPI Slat Assembling Team

Expert

Manager

Engineers

Physicists

Assemblers

Technicians

PNPI team at magnetic field mapping

Workshop on Dimuon Physics in ion-ion Collisions at LHC

Peterhof, Russia

Advisory Board:

F.Staley (DAPNIA, Saclay, France) H.Borel (DAPNIA, Saclay, France) C.Cicalo (INFN, Cagliari, Italy) J.Cleymans (UCT, South Africa) P.Dupieux (LPC,Clermont-Ferrand,France) M.Germain (SUBATECH, Nantes, France) J.-Y.Grossiord (IPN, Lyon, France) B.Espagnon (IPN, Orsay, France) A.Grigorian (PI, Erevan, Armenia) V.Pounine (VNIIEF, Sarov, Russia) V.Samsonov (PNPI, Gatchina, Russia) B.Sinha (Saha, Kolkata, India) A.Tournaire (CERN, Switzerland) E.Vercellin (INFN, Torino, Italy) A.Vodopianov (JINR, Dubna, Russia)

1-7 June 2005

Organizing Committee:

V.Samsonov (Chairman) V.Evseev A.Khanzadeev V.Nikulin M.Zhalov V.Polyakov N.Bukhtoyarova O.Khrapovitskaya

Organized by:

Petersburg Nuclear Physics Institute of Russian Academy of Sciences Joint Institute for Nuclear Research VNIIEF

Contact Information:

Phone: +7(81371)46994 FAX: +7(81371)37916 E-mail: <u>dimuon@pnpi.spb.ru</u> http://hepd.pnpi.spb.ru/~dimuon/

Ультра-периферические взаимодействия @ ALICE

Написаны главы, посвященные фоторождению тяжелых кваркониев в следующие документы (опубликованы в 2005):

- ALICE Physical Performance Report, глава 6
- Ultra-peripheral interactions Yellow Report

Coherent photoproduction of quarkonia in ultraperipheral pA collisions

Measuring the cross section which is proportional to the gluon density squared one can study gluon density at small x

Coherent J/ ψ photoproduction in peripheral pA (SZ)

Монте-Карло симуляции (AliRoot) предсказывют разумные

скорости счета и отношения сигнал/фон: ~20,000 J/ψ событий за 10⁶ сек, при достоверности ~150

Исходный спектр по быстроте У(точки с ошибками), случай, когда пара мюонов была зарегистрирована димюонным плечм (синий пик), случай, когда один мюон был зарегистрирована димюонным плечом, а второй – баррельной частью детектора ALICE (красный пик.)

Основная проблема - выбор триггера нулевого уровня (ZDC приходит слишком поздно). Возможности:

- Димюонный триггер
- Димюонный триггер + вето от PHOS или ECAL (если удастся)

Измерение поляризации Ј/ψ в ALICE

ПИЯФ предложил исследовать вопрос о возможности измерения поляризации кваркония в эксперименте ALICE как в p-p, так и в Pb-Pb столкновениях.

Установка ALICE рассчитана на регистрацию кваркония в диэлектронном и димюонном каналах с хорошим аксптансом, что позволит набрать необходимую статистику для изучения поляризации.

Этим начал заниматься Е.Крышень (студент 5 к. СПбГПУ)

Измерение поляризации Ј/ψ

Угловое распределение мюонных пар Ј/ψ в системе покоя:

 $I(\cos \theta^*) \sim 1 + \lambda \cos^2 \theta^*$

- *q* *- угол, между импульсом лептона в системе покоя J/ψ и импульсом J/ψ
- $\lambda = 0 отсутствие поляризации$ $<math>\lambda = 1 - поперечная поляризация$ $<math>\lambda = -1 - продольная поляризация$

Измерение поляризации Ј/ф

•Измерения поляризации чармония в протон-антипротонных столкновениях в Фермилабе показывают рост поперечной поляризации при больших поперечных импульсах (> 5 ГэВ/с) в соответствии с обычно используемой моделью в рамках нерелятивистской КХД (NRQCD). Однако при очень больших поперечных импульсах (> 12 ГэВ/с), поляризация уменьшается и даже становится продольной.

•Кроме того, эксперимент Fermilab E866/NuSea обнаружил продольную поляризацию чармония в протон-ядерных столкновениях, что невозможно объяснить в рамках NRQCD.

Модели:

- СЕМ, СЅМ отсутствие поляризации
- NRQCD поляризация при p_t > 6 ГэВ/с (Braaten et al.)
- Ioffe and Kharzeev, PR,C68:061902, 2003: поперечная поляризация (~0.35-0.40) при малых р_t
- Khoze, Martin, Ryskin, and Stirling, Eur.Phys.J. C39:163-171, 2005: поперечная поляризация при малых p_t и продольная при больших p_t

J/ψ polarization in p+pbar @ 1.8 TeV, CDF

Предварительные результаты PHENIX

Будущие измерения поляризации чармония на RHIC позволят прояснить эту загадку и помогут понять механизм образования чармония. В настоящее время измерения поляризации на PHENIXe имеют очень большую статистическую погрешность, которая не позволяет сделать определенных выводов. Ситуация улучшится, когда RHIC будет работать с более высокой светимостью.

ПИЯФ в СВМ

The future Facility for Antiproton an I on Research (FAIR)

CBM physics topics and observables

Ø Strangeness in matter (strange matter?) Ä enhanced strangeness production ? measure: K, Λ , Σ , Ξ , Ω

 $\begin{tabular}{ll} \hline \textbf{Ø} Indications for deconfinement at high ρ_B \\ \hline \textbf{A}$ anomalous charmonium suppression ? \\ measure: J/ψ, D \end{tabular} \end{tabular}$

Ø Critical point Ä event-by-event fluctuations

Ø Color superconductivity Ä precursor effects ?

Recent Financing Plan of the BMBF (13.9.04)

Finance Plan Accumulated

Table 21.2: Responsibilities

	Work package	Institution
	Simulation and analysis framework	GSI Darmstadt
Compressed Baryonic Matter	Track, vertex and momentum recon- struction	KIP Univ. Heidelberg, Univ. Mannheim, JINR-LHE Dubna, JINR-LIT Dubna
Experiment	Simulations hadron identification via TOF, critical fluctuations	Heidelberg Univ., Kiev Univ., NIPNE Bucharest, INR Moscow, RBI Zagreb
	Feasibility study low-mass vector me- son identification via dilepton pairs	Univ. Krakow, JINR-LHE Dubna
	Feasibility study charmonium identifi-	INR Moscow. GSI, PNPI St. Petersburg, GSI, RBI
	cation via dielectron and dimuon pairs	Zagreb
	Feasibility study D-Meson identifica- tion	GSI Darmstadt, Czech Acad. Science Rez, Techn. Univ. Prague
	Feasibility study hyperons	Polytech. Univ. St. Petersburg, JINR-LHE Dubna
	Delta electrons	GSI Darmstadt
STATE AND	Silicon Pixel Detector	IReS Strasbourg, Frankfurt Univ., GSI Darmstadt, RBI Zagreb, Krakow Univ.
	Silicon Strip Detector	Univ. Obninsk, SINP Moscow State Univ., CKBM St. Petersburg, KRI St. Petersburg RPC
	TOF detector system with read-out	LIP Coimbra, Univ. Santiago de Compostela, Univ.
	electronics	Heidelberg, GSI Darmstadt, NIPNE Bucharest, INR Moscow, FZ Rossendorf, IHEP Protvino, ITEP Moscow, Korea Univ. Seoul, RBI Zagreb, Univ. Krakow, Univ. Marburg
	Transition Radiation Detector (TRD)	JINR-LHE Dubna, GSI Darmstadt, Univ. Münster, PNPI St. Petersburg, NIPNE Bucharest
	Straw tube tracker (TRT)	JINR-LPP Dubna, FZR Rossendorf, Tech. Univ. Warsaw
	Ring Imaging Cherenkov Detector (RICH)	HEP Protvino, GSI Darmstadt, Pusan Nat. Univ., PNPI St. Petersburg
	Electromagnetic Calorimeter (ECAL)	ITEP Moscow, IHEP Protvino
	Forward Calorimeter	INR Moscow
	Diamond Microstrip Start Detector with read-out electronics	GSI, Univ. Mannheim
	Front-End Electronics, Trigger and Data Acquisition	KIP Univ. Heidelberg, Univ. Mannheim, JINR LIT Dubna, GSI Darmstadt, Univ. Bergen, KFKI Bu- dapest, Silesia Univ. Katowice, PNPI St. Peters-
lanuary 2005 Technical Status Report		burg, Univ. Warsaw
Sandary 2003	Design of a superconducting dipole magnet	JINR-LHE Dubna, GSI Darmstadt
	Calculation of radiation doses	Kiev Univ.
	Modification of HADES for 8 AGeV	Czech Acad. Science Rez

Option#1: ~ **10** m from target

MuID geometry - option #1

Particles yields used for normalization Signal to Background:

Particle	N/event	Decay	BR	Pair/event	
J/Psi	1.9*10 ⁻⁵	m+m-	5.88%	1.12*10 ⁻⁶	
Phi	0.6	m+m-	2.85*10-4	1.71*10 ⁻⁴	
Omega	mega 12 m ⁺ m ⁻		9.00*10 ⁻⁵	1.08*10 ⁻³	
Rho	22	m+m-	4.55*10 ⁻⁵	1.00*10 ⁻³	

Conclusion:

Using Fe absorber of the thickness of about 300 cm and kinematics cut allow to reach Signal to Background ratio on the level of:

~ 1 for J/Psi detection

~ 0.001 for light mesons

Option#2: ~ **2 m from target**

MuID geometry - option #2

Efficiency of the vector meson signals and signal to background ratio for the different versions of the muon system

	J/y		r		W		j	
muon system with absorbers:	after tracki ng	after ''high '' cuts	after tracki ng	after ''low'' cuts	after tracki ng	after ''low'' cuts	after tracki ng	after ''low'' cuts
efficiency %								
6 C 6 Fe 4 Fe + C 4 Fe + C - 15% 4 Fe + C + 15%	24 20 - -	12 12 - -	4.1 0.6 1.8 3.1 1.6	2.6 0.4 0.9 1.9 0.8	3.8 1.1 2.3 3.3 1.3	2.3 0.5 1.4 2.3 0.7	6.3 1.6 4.1 5.3 2.4	6.0 1.5 3.7 4.6 2.2
S/B ratio								
6 C 6 Fe 4 Fe + C 4 Fe + C - 15% 4 Fe + C + 15%	0.8 0.3 - -	> 90 > 20 - -	0.005 0.001 0.004 0.001 0.01	0.009 0.005 0.01 0.005 0.05	0.10 0.07 0.2 0.04 0.2	0.2 0.2 0.7 0.2 1.3	0.06 0.01 0.04 0.01 0.06	0.1 0.02 0.2 0.004 0.2

Invariant mass spectrum after "high" cuts: black – combinatorial background plus J/y signal; red – only signal

Invariant mass spectrum after "low" cuts: magenta – combinatorial background plus low mass vector meson signals; black – only background; red - r; blue - w; green - j

Концептуальное проектиование RICH для СВМ

RICH2 LHCb

Figure 4: Full 3D CAD model of RICH 2.

RICH CBM

requests: electron ID p < 10 GeV/c pion suppression > 100 pion ID p > 4-5 GeV/c

mirror: Be glass, r=450 cm two focal planes radiator: $\gamma > 38$ (e. g. N₂)

CBM RICH mirrors, hexagonal option, the mirror support based on carbon structures

CBM RICH, square mirror option, the carbon support structures

PMT FEU-Hive

Стапель для сборки камер

Камера перед сборкой

Создание этих камер мы рассматриваем как R&D возможного решения для трековых станций большой площади в проектах на FAIR GSI.

Более того, уже эти камеры, помимо эксперимента LAND, будут являться трековой системой (необходимо будет сделать еще две камеры) протонного плеча установки R3B для исследования в полной кинематике реакций с высокоэнергичными радиоактивными пучками на FAIR GSI.

Спасибо за внимание

Что мы исследуем?

Исследуем состояния ядерной материи в экстремальных условиях по температуре и плотности:

 О Современная теория QCD предсказывает много необычных свойств у такой материи (см. диаграмму)
Важно для понимания эволюции Вселенной и состояния вещества в звездах

Full size (2400 mm) slat prototype on T10 beam line

LHC planning

- Year 1
 - pp detector commissioning & physics data and PbPb : global observables physics
- Year 2 (similar to Year 4)
 - pp physics & baseline and PbPb @ nominal luminosity for rare probes (i.e. ~9000 Upsilons)
- Year 3
 - pPb (or dPb, αPb) nuclear modification of parton distributions
- Year 5
 - ArAr system