ОФВЭ В 2005 году

ЛАБОРАТОРИИ ОФВЭ

 Лаб. физики элементарных частиц
 Г.Д.Алхазов

 Лаб.короткоживущих ядер
 В.Н.Пантелеев

 Лаб.мезонной физики
 В.В.Сумачев

 Лаб.малонуклонных систем
 С.Л.Белостоцкий

 Лаб.мезонной физики конденсированных сред

Лаб.релятивистской ядерной физики Лаб.физики и техники ускорителей Лаб.мезоатомов Лаб.редких распадов Лаб.адронной физики Лаб. крио и сверхпроводящей техники .Белостоцкий сред В.П.Коптев В.М.Самсонов Г.А.Рябов Ю.М.Иванов В.А.Гордеев О.Е.Федин А.Васильев

ФИЗИЧЕСКИЕ ГРУППЫ

Группа мезоядерных реакцийГ.Г.СеменчукГруппа ядерных исследованийД.М.СеливерстовГруппа поляризационных эффектовВ.Г.ВовченкоГруппа прикладной радиохимииГ.Н.ШапкинГруппа детекторов В-физикиБ.В.Бочин

НАУЧНО-ТЕХНИЧЕСКИЕ ПОДРАЗДЕЛЕНИЯ

Отдел радиоэлектроники Отдел трековых детекторов Отдел вычислительных систем Отдел мюонных камер В.Л.Головцов А.Г.Крившич А.Е.Шевель В.С.Козлов

Централизованное производство *Е.А.Филимонов* ОФВЭ *В.И.Ясюкевич*

Ускорительный отдел *Н.К.Абросимов* Группа обработки информации и автоматизации *С.А.Артамонов* 8 служб ОФВЭ

ЧИСЛЕННОСТЬ ОФВЭ

1998 год	472 чел.
1999 год	441
2000 год	436
2001 год	427
2002 год	410
2003 год	407
2004 год	401
2005 год	391

19 доктора наук87 кандидаты наук

БЮДЖЕТНОЕ ФИНАНСИРОВАНИЕ ОФВЭ

2001 2002 2003 2004 2005

LHC	3450	4880	5040	6200	9580	
Школа	245	172	400	420	409	
Ун.уст.	1080	1100	2500	2520	3000	
Феникс	300	360	1080	43	500	
Мюон	220	190	190	150	500	
РФФИ	1223	1061	1010	600	720	
ФЯФ	241	300	350	180		
АН -бюджет	966	2660	3050	11100	11500	

P

РАН-контракт---8000Всего:772510723216202120026209тыс.руб.

контракты и договоры

Германия, США, Швейцария, Италия, Россия

	2001	2002	2003	2004	2005
\$	20 000	28 000	56 000	101000	204 081
EURO	18 443	34 730	85 500	71000	44 730
CHF	35 000	60 000	80 000	82500	66 000
Руб.	43 350	220 000	266 000		
Контр	150 000	1 490 000	l 250 000 p	уб	400 000
Всего	2 000 000	4 800 000	8 000 000	8 000 000	9 500 000 руб

Зарубежные командировки

252 (227 в 2004) выездов за границу
126 (116 в 2004) чел

• Всего по ПИЯФ

496 выездов

ИМПОРТ – ЭКСПОРТ

	ИМПОРТ		ЭКСПОРТ	
Год	Количество деклараций	Сумма, \$	Количество деклараций	Сумма, \$
1998	6	11 837	29/29	214 943
1999	24	53 850	44	192 644
2000	31	280 044	///////////////////////////////////////	97 600
2001	41	824 313	17	54 082
2002	28	1 195 888	6	41 964
Итого	130	2 365 932	120	601 233
2004	52	2 885 730	16	603 000
2005	117	12 554 680	168	26 341 572

CERN,
PSI, Basel(Швейцария)DESY, GSI
LegnaroFNAL(США))SaclayOSAKA(Япония)

(Германия) (Италия) (Франция)

публикации и диссертации

77 статей в иностр.журналах
12 статей в росс.журналах
38 препринтов

М.П. Левченко к.ф.м.н.
В.Л. Головцов к.ф.м.н. (26.01.06)

• 26 семинаров ОФВЭ

Синхроциклотрон

Ускоритель отработал в 2005 году 2532 часа

Усовершенствования синхроциклотрона

Замена силовых (10kV) кабелей на 5 трансформаторах

Усовершенствования синхроциклотрона (система электропитания)

Устранение пульсаций 150 ГЦ в системе питания магнита Е-9

Усовершенствования синхроциклотрона (система электропитания)

Ревизия 50 пультов управления систем стабилизации,

Усовершенствования синхроциклотрона (система электропитания)

Замена батареи аварийного электропитания.

1.2 Усовершенствования синхроциклотрона (улучшение инфраструктуры) 1.2.8 Ремонт пультовой к. 2а, «Архиград» ~ 1 млн. руб.

туалета к. 2а

Ремонт малого машинного зала 2к, мех. мастерская 2к помещение аккумуляторной,

Силами РСО

Протонная терапия

Модернизация и автоматизация комплекса ПЛТ

Коллиматор

главного зала

Коллиматор

экспериментального зала

Стабилизация интенсивности пучка при облучении пациентов

Профиль пучка в изоцентре

измерительная система

2D-профиль в изоцентре (FWHM 5,8*5,9 мм)

2 пары проволочных камер 128×128 мм

Мониторинг дозы

Распределение дозы за время облучения

2 пропорциональные камеры в токовом режиме

Протонная терапия

Облучено больных за год – 23 (2005)
 29 (2004)

Изохронный циклотрон ГИЦ Магнитная система

Н-- источник

Монтаж новых шимм.

Усовершенствования системы

электропитания ГИЦ

3D расчет новой ВЧ системы.

Малые ускорители

В группе малых ускорителей проводятся работы по разработке ППИ Н⁻ ионов, представленные выше.

Кроме того на ЭСУ проведены исследования:

- 1. Продолжено исследование механизмов старения газо-разрядных детекторов для экспериментов на LHC (с ОФВЭ);
- 2. Исследование защитных покрытий, взаимодействующих с высокотемпературной плазмой (с ФТИ);
- 3. Исследование полупроводниковых материалов для микроэлектроники (совместно с ФТИ РАН).

В 2005 г. группа вошла в программу «Вредные вещества», цель которой – получение перспективных данных для совершенствования аппаратуры для обнаружения взрывчатых веществ, наркотиков (совместно с гр. Митропольскльго И.А. и Логинова Ю.Е.)

В 2005 году опубликовано 7 печатных работ.

Ускорительный отдел в 2005 году

проблемы

Капитальный ремонт помещений
 Кадры

Эксперименты на СЦ

Измерение изотопического сдвига ¹⁵²Yb

Создание новой лазерной установки: новый лазер повышенной мощности, оптическая схема лазерной системы на парах меди для накачки лазеров на красителе

3Γ – задающий генератор, **У1** - **У2** – усилители, **1** – 1% светоделитель, **2** – 90% светоделитель, **3** – 50% светоделитель, **4** – ПИМ – 1, **5** – ТИ -3, **6** – линза, **7** – реверсивный отражатель, **В**Л – волоконная линия транспортировки.

Цифры указывают выходные мощности в каналах на обеих линиях 510нм и 578нм.

Сотрудничество

Российские партнеры:

РИ им. Хлопина •Институт высокотемпературной электрохимии РАН, Екатеринбург •ФГУП НИИ НПО «Луч», Подольск •ООО «Медицинские приборы», Химки

Зарубежные лаборатории:

EURISOL, task #4: •GANIL, проект SPIRAL-II, Франция •LNL (Legnaro), проект SPES, Италия •Orsay (Paris), проект ALTO, Франция

CERN, лаборатория ISOLDE, Швейцария LNS (Catania), проект EXIT, Италия TRIUMF (Canada)

2005 год: мы к ним – 9.5 человеко-месяцев они к нам – 8 человеко-месяцев

7 чел. 17 чел.

Влияние ядерной среды на параметры PN амплитуды

Итоги 2005 года

Измерены р->2р диф. сечения на Р3/2, Р1/2 оболочках

Модернизация Спектрометра -водяная замороженная мишень; -проп камеры для улучш ения углового разрешения; -система низковольт питания. Выполнены измерения сечений реакции p- p $^{(R)}$ hn на жидко-водородной мишени при импульсе налетающих p-мезонов 710 МэВ/с при DP/P = 1.5 % Дифференциальные сечения процесса p- p $^{(R)}$ hn в угловом диапазоне от cosQcm = +1 до cosQcm = -1 в системе центра масс.

Схема экспериментальной установки для измерения сечений деления Энергетическая зависимость сечений деления.

• наши данные

 данные других работ

---- параметризация работы [2]

_____ результат расчета в рамках каскадно – испарительной модели.

µSR 2005

Исследование магнитных фазовых переходов и распределение локальных магнитных полей в системах с конкурирующим взаимодействием.

- 1. P-SG переход в Cu_{1-x}Mn_x 0.2<x<0.6
- 2. P-FM-SG переходы в (Pd_{1-x}Fe_x)_{0.95}Mn_{0.05} , x=0.016

3. Взаимодействие ферромагнетизма и ферроэлектричества в редкоземельных манганитах HoMnO₃ и La_{0.82}Ca_{0.18}MnO₃

4. Деполяризация мюона в пластических сцинтилляторах

Эксперименты на других ускорителях

Внешняя программа

- FNAL (США) DØ
- BNL (США) PHENIX
- DESY(Герм) HERMES
- GSI (Герм) 3 эксп.
- PSI (Швейц) МиСар
- Juelich(Герм) ANKE
- Майнц(Герм) үр
- Бонн (Герм) үр
- Юваскуля(Фин) ISOL
 CERN(Швейц) ISOLDE, L3,CMS, ATLAS, ALICE, LHCb

ИТЭФ (Москва) – пр
ОИЯИ (Дубна) – ФАМИЛОН
ИФВЭ (Серпухов) –

кристаллоптика

L3+PNPI - already 20 years

The first experiment of world-wide scale 1986 -

- 1. Invitation to join L3 Collaboration with the significant contribution
- 2. USSR Academy of Sc provided 12 Mrubles (1US\$=.4 rub).
- 3. More 8000 BGO Crystals with materials delivered by PNPI.
- 4. Investment -
 - (a) Production in PNPI 200 racks for powerful electronics
 - (b) main L3 control room furnished by PNPI
 - (c) Forward Tracking Chamber(FTC) implemented in PNPI, all including

Total PNPI contribution acknowledged - 12 MCHF (all Russia institution in the ATLAS)

Very careful data analysis results in extremely low background and clean interference pattern of several resonances. We conclude that there is new isoscalar state $f_2(1750)$. Dedicated SU(3) consideration shows that new states discovered with the L3 experiment $a_2(1710)andf_0(1750)$ together with states found in other experiments $(f_2(1560)andK_2(1980))$ form new nonet - second tensor mesons nonet, the first radial excitations of the first tensor nonet.

Precision Measurement of Muon Capture on the Proton "µCap experiment"

 $\mu^{-} + p \rightarrow \nu_{\mu}^{+} n$

www.npl.uiuc.edu/exp/mucapture/

Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia Paul Scherrer Institut, PSI, Villigen, Switzerland University of California, Berkeley, UCB and LBNL, USA University of Illinois, Urbana-Champaign, USA Universite Catholique de Louvain, Belgium TU Munich, Garching, Germany Boston University, USA University of Kentucky, USA

@ PSI

uCap

Система очистки водорода в МиСАР эксперименте

Эксперимент S-247: малоугловое рассеяние протонов на ядрах изотопов Ве и В.

Изучение запрещенных и распадов

с использованием детектора Crystal Ball Search for the forbidden decays $\eta g 3\gamma$ and $\eta g \pi^0\gamma$ and the rare decays $\eta g \pi^0\pi^0\gamma\gamma$ and $\eta g \pi^0\gamma\gamma$.

A new upper limit for the branching ratio of h - 3g is:

BR(h g 3g) <4x10⁻⁵ Before this year was : BR(h g 3g) <7x10⁻⁴ [D.M.Alde et al.].

It is obtained also BR(h g p^0 g g 3g) < 9x10⁻⁵, this decay is absolutely forbidden.

It is established that : $BR(h g p^0 p^0 gg) < 1.2x10^{-3}$ in a restricted diphoton energy region.

All three upper limits are at the 90% confidence level and are based on the analysis of 28 million η -mesons produced in the π -p- η n reaction close to threshold.

It is obtained for the branching ratio:

BR(h g $p^{0}gg$) = (3.5 +/-0.7_{stat.}+/-0.6_{syst.}).

It was used about 1600 $\eta g \pi^0 \gamma \gamma$ events based on the analysis of 28 million η -mesons produced in the π -pg η n reaction close to threshold.

Импульс пучка отрицательных пионов -

1.43 ГэВ/с

Измерения выполнены впервые в мире. Использовалась поляризованная мишень ПИЯФ.

Наблюдение отражения протонного пучка от изогнутых атомных плоскостей

Ю.М.Иванов, А.А.Петрунин, В.В.Скоробогатов, С.А.Вавилов, Ю.А.Гавриков, А.В.Желамков, Л.П.Лапина, А.И.Щетковский (ПИЯФ)

А.Г.Афонин, В.И.Баранов, В.Т.Баранов, В.Н.Чепегин, Ю.А.Чесноков (ИФВЭ)

В.Гвиди (Университет Феррары, ИНФН)

А.Вомиеро (ЛНЛ, ИНФН)

В.Скандале (ЦЕРН)

Объяснение результатов опыта: траектории частиц в горизонтальной плоскости, проходящей через центр кристалла.

Эксперимент D0

Поиск распада В_s ® 2µ.

- Ищем свидетельство существования возможных расширений Стандартной Модели (MSSM, SUSY и т.д.), поскольку распад B_s ® 2 µ сильно подавлен в Стандартной Модели
- Учёт всех возможных B_s ® 2 µ SM диаграмм даёт вероятность такого распада (3.5±1.0)
 •10⁻⁹
- Существующие верхние пределы сейчас (300 pb⁻¹⁾:
 CDF результат < 2.0 •10⁻⁷ (95% C.L.)
 D0 результат- < 3.7 •10⁻⁷ (95% C.L.)
- Перспективы Тэватрона для 1 fm⁻¹ интегральной светимости : Br (B_s ® 2 µ)< 1.0
 •10⁻⁷ (95% C.L.)
- Ставилась задача улучшить и найти новые критерии отбора событий идзия домска возможных кандидатов в распад B_s ® 2 μ

Conclusions from the comparison to the data

1. Large initial gluon density

 $\frac{dN_g}{dv} \approx 1000$

2. Large parton energy losses - 12-15 GeV/fm**3

3. High initial temperature - 400 MeV

 Energy density decrease from 20 to 6 GeV/fm**3 during the time period from 0.2 to 1 fm/c

Сравнение с ди-электронным каналом

Статистика Run3 достаточна только для того, чтобы увидеть признаки наличия wмезонов в w® e⁺e⁻ канале. Никакого сравнения с адронным каналом не доступно.

Отношения S/B в Run4 настолько мало, что не позволяет выделить значимый сигнал, соответствующий w®e+e- каналу

Масса ω - мезона

ФЕНИКС может измерять положение центра пика при различных р_т. Точность текущих измерений ограничена статистикой.

Возможность измерения ширины ω-мезонов изучается.

В пределах ошибок измерений не наблюдается изменение массы ω – мезонов в d+Au взаимодействиях. **HERMES Experiment**

Spin flavor decomposition: final result!

∑(quark)=0.347 ,stat.err.=0.024, syst.err.=0.066

RD		HERMES	SMC
m FIELD CLAMPS TRIGGER HODOSCOPE HI	Δu_{v}	0.603 ± 0.071	0.614 ± 0.082
	Δd_{v}	-0.172 ± 0.068	-0.334 ± 0.112
SD rotation not set to	Δs	-0.028 ± 0.033	
	$\Delta \overline{u}$	-0.002 ± 0.036	0.015 ± 0.034
NCH NON WALL VIEDE AVIOLE MUON HODOSCOPE 0 1 2 3 4 5 6 7 8 9 10 11 m	$\Delta \overline{d}$	-0.054 ± 0.033	

LHC

CMS

ATLAS

ALICE

LHCb

Компьютерная сеть

350 (320) РС в сети

Вычислительный кластер

связь 100 Mbit/s

Лаборатория криогенной и сверхпроводящей техники

Источник поляризованных атомов водорода и дейтерия

Ре-циркуляционные газовые системы для различных детекторов.

Установка для исследования ядерной поляризации в молекулярном водороде

Гелиевая жидкостная мишень, <u>РNПИЯФ,</u>

Основные направления работы ОТД в 2005 г.

1. ТРС для эксперимента MUCAP в PSI.

2. Исследование процессов развития старения и стриммерных разрядов в детекторах частиц, работающих в пучках высокой интенсивности.

3. **Проект** ILC.

4. Нейтронный детектор.

5. TOTEM

После LHC == GSI

Panda

АДМИНИСТРАЦИЯ ОФВЭ

А.А.Воробьев

Д.М.Селиверстов зам.директора **А.В.Ханзадеев** зам.директора **В.Л.Головцов** зам.директора **Л.С.Иванова** зам.директора

В.С.Козлов главный инженер Е.А.Филимонов зам.гл.инженер В.А. Гордеев ученый секретарь Л.Ф.Никитина пом. директора по межд.связям

С НОВЫМ ГОДОМ!

2006