Лаборатория мезонной физики конденсированных состояний 2005 год

1

Зав.лаб. Коптев В.П.

Рождение странности на ANKE.

- 1. Кластерный механизм
- 2. $pd \rightarrow K^+ \cdots$
- 3. $Y^*(1480)$
- 4. Скалярные a_0 / f_0 мезоны
- 5. К - ядерный потенциал

Statistics is too poor to conclude => high statistics experiment is needed

"2-step cut" $pN_1 \rightarrow dp$ $N_2 \rightarrow K^+\Lambda$ No "clusters" correlate with high momentum kaons

— Рождение K^+ на кластерах с $M_{d^*} = 1.85 GeV$

4

 $pd \rightarrow dK^+\Lambda$ – подавлен. Нет *d* с $p_d > 750 \text{ Мэв/с}_5$

$$pp \rightarrow pK^{+}Y^{*0} \rightarrow pK^{+}p^{\pm}X^{m} \qquad T_{p} = 2.83\Gamma \Im B$$

$$p^{+}X^{-} \qquad p^{-}X^{+}$$

Принято к публикации в PRL.

Пики с: $M(Y^{*0}) = (1480 \pm 15) M \ni B$ и $\Gamma(Y^{*0}) = (60 \pm 15) M \ni B$ Соответствует $Y^{*0} \to \Sigma^0$ или Λ

Известного В PDG как однозвездночный ∑(1480)

The scalar resonances $a_0/f_0(980)$

Nature of the a_0/f_0 is still unknown!

The a₀/f₀(980) at COSY

Reaction	Production	Where?	T _{beam} , GeV	Status	Result
pp→ d K⁺ <u>K</u> º	a ₀ + (I _{in} =1)	ANKE	2.65	V.Kleber et. at. PRL 91 (2003) 377	a _o ⁺ channel dominates
			2.83	analysis finished	
pn $\rightarrow d K^{+}K^{-}$	f ₀ /a ₀ ⁰ (I _{in} =0,1)	ANKE	2.65	analysis in progress	N(a ₀ ⁰/f ₀) < N(⊉)
dd → ⁴ He <mark>K⁺K</mark> -	f ₀ (I _{in} =0)	ANKE	2.28	April 2006	-
→ ⁴He <mark>π⁰η</mark>	a ₀ ⁰ (I _{in} =0, I _{fin} =1)	WASA	2.28	≥ 2007	-

Total Cross Section

Q = 46 MeV : σ_{tot} = (38 ± 2_{stat} ± 14_{sys}) nb V.Kleber et al., PRL 91 (2003) 377

KK S-wave (a0+ channel) - 95%, P-wave - 5%

Q = 105 MeV : σ_{tot} = (190 ± 4_{stat} ± 39_{sys}) nb KK S-wave (a0+ channel) - 88%, P-wave - 12%

Theoretical predictions: V.Grishina et al., EPJ A 21 (2004) 507

dd→⁴HeK⁺K⁻

WASA@COSY

dd \rightarrow ⁴Hef₀ \rightarrow ⁴HeK<u>K</u> cross section unknown, but it will be measured at ANKE! ⁴HeK⁻ Bound state ?

К⁻ – ядерный потенциал (V_{к-}) 2005г. - обнаружены три $(K^{-}nN)$ связанных состояния О = -193 МэВ $(K^{-}pnn)$ О = -169 МэВ $(K^{-}ppn)$ Q = -115 МэВ $(K^{-}pp)$ $V_{K^{-}} = - (100-150) \text{ M} \Rightarrow B$ $V_{K^{-}} = - (50-200) \text{ M} \Rightarrow B$ $R(\frac{pAu \rightarrow K^{+} \cdots}{pC \rightarrow K^{+} \cdots}) \rightarrow V_{K^{+}} = 20 \pm 0.3M \Rightarrow B$ Требуется большая величина Из дисперсионных соотношений ANKE: быстрое падение R при $p_{\kappa^+} < 250 M \ni B / c$ $pCH_2 \rightarrow K^+K^-\cdots$ аналогично планируется определить V_{K^-} из K^+K^- совпадений 30% K^- из $\Phi_0(1020) \rightarrow K^+K^-$ за пределами ядра $R = \frac{pAu \to K_{\Phi_0}^-}{pC \to K_{\Phi^0}^-} (f(p_{K^-})); \text{ const}$ Спектр К $R = \frac{pAu \to K^{-}_{Hepesoh}}{pC \to K^{-}_{Hepesoh}} (f(p_{K^{-}})) \neq const$ в январе-. феврале 2007 г. V_{K^-} ; -50*М*э*В* быстрый рост R при $p_K < 350M$ э*B* / *c* 11 V_{κ^-} ; -100*М*э*В* быстрый рост R при $p_K < 500 M$ э*B*/*c*

$$pp \rightarrow p^{+}(p^{-}p) pX \rightarrow p^{+} \Lambda pK^{0} \qquad T_{p} = 2.83 GeV$$

µSR 2005

Исследование магнитных фазовых переходов и распределение локальных магнитных полей в системах с конкурирующим взаимодействием.

- 1. P-SG переход в Cu_{1-x}Mn_x 0.2<x<0.6
- 2. P-FM-SG переходы в (Pd_{1-x}Fe_x)_{0.95}Mn_{0.05} , x=0.016
- 3. Взаимодействие ферромагнетизма и ферроэлектричества в редкоземельных манганитах HoMnO₃ и La_{0.82}Ca_{0.18}MnO₃
- 4. Деполяризация мюона в пластических сцинтилляторах

Фазовая диаграмма гомогенных медномарганцевых сплавов Cu_{1-x} Mn_x.

Магнитному фазовому переходу в состояние спинового стекла предшествует переход в состояние суперпарамагнетика. Работа завершена. 14 Исследование распределений локальных статических полей

$$(Pd_{0,984}Fe_{0.016})_{0,95}Mn_{0.05}$$

<u>Восприимчивость:</u> переход P-FM переход FM-SG $T_c=39K$ $T_s=(7-10)K$

<u>Деполяризация</u> уменьшение деполяризации <u>нейтронов</u>: при T < 28K

Внутри FM появляется SG, т.е. еще один переход FM-ASFM при T=T_A=28K ? Размер FM домена ?

Температурные зависимости динамической скорости релаксации λ, средней величины поля H и его разброса Δ.

При Т<28 К отклонение от ферромагнетика.

Совместный анализ деполяризации нейтрона и мюона использован для определения размеров доменов ~10мкн.

16

Температурная зависимость доли спин-стекольного вклада.

$$G(t) = a_{SG}G_{SG}(t) + a_{FM}G_{FM}(t) \qquad a_0 = a_{SG} + a_{FM}$$

При температуре T_a~28К наблюдается частичный переход из ферромагнетного состояния в состояние асперомагнетика (?), предшествующего переходу в состояние спинового стекла.

Исследование взаимодействия ферромагнитного и ферроэлектрического порядка в редкоземельных манганитах RMnO₃

- а). Материалы с большим магнитосопротивлением
- б). Наличие ферромагнитных и ферроэлектрических переходов.

Возможность управлять электрическими (магнитными) характеристиками с помощью внешних магнитных (электрических) полей.

Образцы: HoMnO₃ $T_c=71$ K, $T_{SR}=33$ K La_{0.82}Ca_{0.18}MnO₃ $T_c=155$ K, $T_{SR}=?$

Проведены первые пробные измерения для выяснения:

а). качества образцов

б). возможности µSR- измерения распределений локальных магнитных полей

При T~71 К наблюдается узкий фазовый переход в состояние 3D коллинеарного ферромагнетика.

Вывод: образцы однородны.

Функция релаксации спина мюона

 $T < T_{Sr}^{Mn} = 33K$ в обоих образцах наблюдается сильное искажение локальных При температуре 20 магнитных полей.

0,3 Н_{вн}=100 Ое 0,2 - алюминий P=P₀ 0,1 - пластический сцинтиллятор (Харьков) 0,0 a, G $P \sim 1/3 P_0$ -0,1 • - пластический сцинтиллятор (Дубна) -0,2 $P \sim 1/5 P_0$ -0,3 180 200 220 240 260 280 300 320 340 140 160 t, chanel (4.88ns/ch bin=4ch t_=121ch) - мюоний в кварце H_{BH}=7 Oe - отсутствует мюоний в пластических сцинтилляторах 0,35 0,35 0,30 0,30 0,25 0,25 0,20 0,20 0,15 0,15 0,10 a*G 0,10 a, G 0,05 0,00 0,05 -0,05 0,00 -0,10 -0,05 -0,15 -0,10 -0,20 -0,15 -0,25 140 160 180 200 140 160 180 200 t, chanel (4.88ns/ch bin=1 t_=121ch) t, chanel (4.88ns/ch bin=1 t_o=121ch)

Деполяризация мюонов в пластическом сцинтилляторе

Нужны измерения в продольном магнитном поле 150-200 Ое.

21

План работ на 2006 г.

- a) провести µSR измерение локальных полей в (Pd_{0.984}Fe_{0.016})_{0.95}Mn_{0.05} во внешних магнитных полях 10-1000Oe в диапазоне температур 10-40K.
- б) в образцах H₀MnO_{3 и} La_{0.82}Ca_{0.18}MnO₃ провести µSR измерения локальных магнитных магнитных полей в нулевом внешнем магнитном поле и диапазоне температур 10-150К.
- в) до 2005 г. в России достаточно активно работали две µSR установки: ОИЯИ (Дубна) и ПИЯФ (Гатчина). В 2005 г. по ряду технических причин работа в Дубне была временно приостановлена не менее чем на 2 года. На совместном периодическом совещании двух µSR- групп было решено в 2006-2007 гг. часть µSR-исследований, выполняемых в Дубне, проводить как совместные эксперименты в Гатчине. Одно из наиболее интересных направлений ранее не проводимых с помощью µSR-метода: исследование феррожидкостей на основе Fe₃O₄.

По существу задача сводится к исследованию магнитных характеристик наноструктурных образований. Очень важно, что существует возможность использования калиброванных гранул Fe₃O₄ переменного размера, начиная с диаметра ~100 А.

Трудность: малое объемное количество рабочего материала (~5% объема). Пробные µSR измерения, выполненные в Дубне достаточно оптимистичны: при Т ~230К наблюдался узкий магнитный фазовый переход, а при температурах ниже перехода наблюдается экспоненциальная релаксация спина µ-мезона, характерная для суперпарамагнитных образований.

В 2006 г. В ПИЯФ планируется провести более детальные исследования в диапазоне температур 20 - 300К во внешних полях 0-1000Ое.