ОФВЭ В 2004 году

ЛАБОРАТОРИИ ОФВЭ

 Лаб. физики элементарных частиц
 Г.Д.Алхазов

 Лаб.короткоживущих ядер
 В.Н.Пантелеев

 Лаб.мезонной физики
 В.В.Сумачев

 Лаб.малонуклонных систем
 С.Л.Белостоцкий

 Лаб.мезонной физики конденсированных сред

Лаб.релятивистской ядерной физики Лаб.физики и техники ускорителей Лаб.мезоатомов Лаб.редких распадов Белостоцкий сред В.П.Коптев В.М.Самсонов Г.А.Рябов Ю.М.Иванов В.А.Гордеев

ФИЗИЧЕСКИЕ ГРУППЫ

Группа мезоядерных реакций Группа ядерных исследований Группа поляризационных эффектов В.Г.Вовченко Группа ядерных взаимодействий Группа радиохимии Группа прикладной радиохимии Группа "АТЛАС" Группа детекторов В-физики

Г.Г.Семенчук Д.М.Селиверстов Ф.Г.Лепехин Е.Г.Алексеев Г.Н.Шапкин О.Е.Федин Б.В.Бочин

НАУЧНО-ТЕХНИЧЕСКИЕ ПОДРАЗДЕЛЕНИЯ

Отдел радиоэлектроникиВ.Л.ГоловцовОтдел трековых детекторовА.Г.КрившичОтдел вычислительных системА.Е.ШевельОтдел криогенной и сверхпроводящейН.Н.ЧерновТехникиИ.А.Е.ФоровОтдел мюонных камерВ.С.Козлов

Централизованное производство *Е.А.Филимонов* ОФВЭ *В.И.Ясюкевич*

Ускорительный отдел *Н.К.Абросимов* Группа обработки информации и автоматизации *С.А.Артамонов* 8 служб ОФВЭ

ЧИСЛЕННОСТЬ ОФВЭ

1998 год	472 чел.
1999 год	441
2000 год	436
2001 год	427
2002 год	410
2003 год	407
2004 год	403
<u>Наука</u> 150	19докторов наук
<u>ИТР</u> 143	86 кандидата наук
<u>Рабочие</u> и лаб. 111	

БЮДЖЕТНОЕ ФИНАНСИРОВАНИЕ ОФВЭ

	2001	2002	200	03 2004
LHC	3450	4880	5040	6200
Школа	245	172	400	420
Ун.уст.	1080	1100	2500	2520
Феникс	300	360	1080	43
Мюон	220	190	190	150
РФФИ	1223	1061	1010	600
ΦЯΦ	241	300	350	
РАН -бюджет	966	2660	3050	
РАН- контракт			8000	11100
Всего:	7725	10723 2	1620	21003 тыс.руб.

контракты и договоры

Германия, США, Швейцария, Италия, Россия

		2001	2002	2003	2004
	\$	20 000	28 000	56 000	101000
]	EURO	18 443	34 730	85 500	71000
(CHF	35 000	60 000	80 000	82500
	Руб.	43 350	220 000	266 000	
Мед	ицина	150 000	1 490 000	1 250 000p	уб.
====					=
]	Всего	2 000 000	4 800 000	8 000 000	8 000 000руб

Защита диссертаций

п Н.К. Абросимов д.ф.м.н.

n А.А. Изотов к.ф.м.н. n Д.Е. Баядилов к.ф.м.н.

Синхроциклотрон

Ускоритель отработал в 2004 году 1846 часов

Четыре старых теплообменника на 2.5 МВт, каждый из 6 труб диаметром 330 мм, длиной 4 м.

После 35 лет эксплуатации теплообменники пришли в полную негодность.

- Новые пластинчатые теплообменники на 2.8 МВт.
- 2. Стоимость: 450 тыс. руб.
- 3. Монтаж, демонтаж и наладка выполнены силами ускорительного отдела.

Введен в строй новый резервный агрегат питания для магнита Е-9 мощностью 1.6 МВт и током 6000 А

Усовершенствование инфраструктура в 2004 году :

Ремонт вестибюля корпуса 2а. 450 тыс. руб. Ремонт конференц зала корпуса 2а Ремонт крыши 380 тыс. машинного зала ∫руб. Ремонт измерительного зала синхроциклотр она силами PCO

Протонная терапия

n Облучено больных за год - 29

n Модернизация и автоматизация комплекса ПЛТ

Зал облучения

З Изохронный циклотрон ГИЦ 3.1 Магнитная система

Развертка сечения сектора и долины вдоль радиуса

- Секторные накладки: 1. вместо 10 мм накладка 5 мм;
 - вместо 18 мм накладка 9 мм;
 - 3. добавлено 3 мм.

Долинные шиммы:

- внутри гармонической обмотки h = 45 мм;
 - дополнительный шимм h = 45 мм;
 - гармоническая обмотка.

Произведен подбор шимм по измерениям в одном секторе для получения изохронного поля на конечных радиусах 55-80 см.

Изготовлен набор подобранных шимм на все сектора. Стоимость материала 25 тыс. руб., зарплата 10 тыс. руб.

3 Изохронный циклотрон ГИЦ 3.1 Магнитная система

Результаты шиммирования среднего поля на последних радиусах.

3 Изохронный циклотрон ГИЦ 3.1 Магнитная система

3D расчеты магнитного поля.

3D график расчетного магнитного поля

3 Изохронный циклотрон ГИЦ 3.2 ВЧ система.

Проведены расчеты четверть волнового И полуволнового коаксиальных резонаторов (фидера связи) для связи высокочастотного (ГВЧ) генератора мощностью 40 кВт С Расчеты дуантом. проверены откорректированы на полномасштабных макете дуанта и фидере связи. Отработана методика настройки совместно с ГВЧ, фидером связи и дуантом.

З Изохронный циклотрон ГИЦ 3.2 Н⁻⁻ источник.

В 2003 году установлено, что для получения в ППИ Н- ионов с током 3 мА необходимо увеличить мощность разряда до 1 КВт и ввести охлаждение анода и катода. В 2004 году введено охлаждение анода дисциллированной водой под давлением 10 Атм. Стоимость насоса на 10 Атм. и теплообменника ~ 70 тыс.руб.

Получен в нестабильном режиме ток > 3 мА. Остается решить вопрос о долговременном режиме работы.

5 Малые ускорители.

В группе малых ускорителей проводятся работы по разработке ППИ Н⁻ ионов, представленные выше.

Кроме того на ЭСУ проведены исследования:

- 1. Механизмов старения газоразрядных детекторов для экспериментов на LHC (с ОФВЭ),
- 2. Старения электродов водородной камеры для мю катализа (А.А.Воробьев, Г.Г.Семенчук).
- 3. Полупроводниковых материалов для микроэлектроники (совместно с ФТИ РАН).

В 2004 году опубликовано 4 печатных работы.

Эксперименты на СЦ

ИРИС

Исследование нейтроноизбыточных и нейтронодефицитных ядер, удаленных от полосы β-стабильности

Карта нуклидов

Методика эксперимента

Использование специальной конструкции мишени с лазерным ионным источником:

Впервые использована лазерная мишень:

увеличение эффективности в 5 раз

tungsten container H inner target container Η Ð Laser ion source Laser laser beam beams. Extraction electrode target material \oplus 3 Target_material tantalum plugs \odot proton beam extraction electrode Target container Proton beam tantalum current connectors

увеличение селективности в 10 раз

Изменения среднеквадратичных зарядовых радиусов и магнитные моменты, вычисленные для измеренных нуклидов

Isotope	$D < r^2 >_{A-160}, Fm^2$	μ, n.m.	
^{145m} Gd (I=11/2)	-1.76(5)	-1.0(0.2)	
¹⁴⁵ Gd (I=1/2)	-1.79(3)	-0.74(5)	
^{143m} Gd (I=11/2)	-1.69(5)	-	

Изотопические изменения среднеквадратичных зарядовых радиусов Gd (Z=64) относительно ¹⁴⁶Gd в сравнении с данными для изотопов Eu (Z=63) с тем же числом нейтронов

Разработка новых высокоэффективных мишенноионных устройств, 2004 г.

Сотрудничество

Российские лаборатории:

•Институт спектроскопии РАН,

Зарубежные лаборатории:

•CERN, лаборатория ISOLDE, Швейцария.
•GANIL, проект SPIRAL-II, Франция.
•LNL (Legnaro), проект SPES, Италия.
•LNS (Catania), проект EXIT, Италия.
•Orsay (Paris), проект ALTO, Франция.

•EURISOL (International collaboration).

TRIUMF (Canada) - выразил желание участвовать в разработке и исследовании UC мишеней высокой плотности.

Влияние ядерной среды на параметры PN

амплитуды

-Проведён сеанс Не-4 мишени (разр.ОКСТ) - Новая электроника считывания с проп. камер (ОРЭ) 2003-2005

Ca-40,Li-6, C-12 ½ S published Phys.Rev.C Febr. 2004

Схема экспериментальной установки для измерения сечений деления

Энергетические зависимости полных сечений деления ядер ^{233, 235, 238}U протонами
Выполнены первые измерения сечения реакции π -р \rightarrow η n на жидко-водородной мишени при импульсе налетающих π -мезонов 710 МэВ/с.

μSR

Рис. 1. Фазовая диаграмма сплава Cu1-х Mnx

Time-of-Flight Spectrum

isochronous m/q range: 2.56 – 2.65

Germany GST JLU Giessen JGU Whinz TU Whinchen

SINS Warsaw

110355 CH 153510000

UVP OISUV

PI [PI Univ. St. Petersburg **10 countries 18 institutions**

ILIMA

66 participants

<u>IIVIP Lanzhou</u>

<u>ivis</u>u Laire

Univ. Surray Univ. Mancheste.

Исследование бета-распада ядер вблизи дважды магического ядра 100Sn GSI Л.Х. Батист, Ф.В. Мороз

Систематика интегральных величин приведенной вероятности перехода Гамова-Теллера ядер близких к ¹⁰⁰Sn

Исследование короткоживущих нуклидов на установке IGISOL в Ювяскюля

Ю.Н. Новиков, Л.Х. Батист, Г.К. Воробьев, А.В. Попов

Ааборатория Физики Элементарных Частиц

Precision Measurement of Muon Capture on the Proton "µCap experiment"

 $\mu^- + p \rightarrow \nu_{\mu}^+ n$

www.npl.uiuc.edu/exp/mucapture/

Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia Paul Scherrer Institut, PSI, Villigen, Switzerland University of California, Berkeley, UCB and LBNL, USA University of Illinois, Urbana-Champaign, USA Universite Catholique de Louvain, Belgium TU Munich, Garching, Germany Boston University, USA University of Kentucky, USA

@ PSI

µCap

Система очистки водорода.

Схема эксперимента по измерению параметра Р на пионном пучке ускорителя ИТЭФ.

Сравнение результатов измерений с предсказаниями ПВА.

Импульс пучка отрицательных ПИОНОВ -2,07 ГэВ/с Открытые точки – результаты предыдущих измерений, выполненных коллаборацией ПИЯФ-ИТЭФ в 1991 году с использованием другой поляризованной мишени. Сплошные точки результаты

2004 года.

На пучке меченых фотонов электронного ускорителя МАМІ-В в Майнце (Германия)

Эксперимент по измерению магнитного дипольного момента $\Delta^+(1232)$ изобары. Эксперимент осуществляется на пучке линейно-поляризованных фотонов с использованием детектора Crystal Ball. Исследуется реакция $gp \rightarrow g \phi^0 p$, фотоны и протоны регистрируются детектором Crystal Ball и дополнительным форвардным детектором TAPS. Первый этап эксперимента булет завершен к апрелио 2005 г.

В левой части рисунка – схематической изображение экспериментальной установки с детектором Crystal Ball на ускорителе МАМІ в Майнце, в правой части детектор Crystal Ball в разрезе.

Схематическое изображение экспериментальной установки с детектором Crystal Barrel на ускорителе ELSA в Бонне. The observation of new mesons with the L3 Experiment

Analysis results of the $\gamma\gamma
ightarrow \pi^+\pi^-\pi^0$

Table 1: Masses, widths and production of the $\Gamma_{\gamma\gamma}$ partial width and the branch into 3π for the observed resonances.

Resonance	M (MeV)	Γ (MeV)	$\Gamma_{\gamma\gamma}Br(3\pi)(KeV$		
$a_2(1320)$	$1300 \pm 2 \pm 4$	$126 \pm 6 \pm 20$	$0.65 \pm 0.02 \pm 0.02$		
$a_2(1700)$	$1722\pm9\pm15$	$340\pm20\pm20$	$0.37^{+0.12}_{-0.08}\pm0.10$		
$a_2(2030)$	$2050\pm10\pm10$	$200 \pm 22 \pm 30$	$0.11 \pm 0.04 \pm 0.03$		
$\pi(1300)$	1350 ± 40	320 ± 50	≤ 0.8		
2^{-+}	$1860 \pm 12 \pm 10$	$360\pm30\pm40$	$0.15 \pm 0.03 \pm 0.03$		
$\pi_2(1670)^*$	1670	260	≤ 0.1		

 * - results of the fit with the 2^{-+} signal fixed as $\pi_2(1670)$ with values taken fre

$I^G J^{PC}$	Mass	Width	ρρ	$a_1\pi$	$\pi'\pi$	$f_0 f_0$	$a_2\pi$
	(MeV)	(MeV)	(%)	(%)	(%)	(%)	(%)
	1.290	260		12 (20)	6 (5)		
$0^{+}0^{++}$	1.420	700		1 (3)	2 (2)	4 (1)	
	2.045	245	2 (6)	0.5 (1)	6 (8)	2 (1)	
	1.275	185		15 (30)		1 (0.5)	1.5 (5)
$0^{+}2^{++}$	1.550	175		3 (7)	1 (2)	1 (0.5)	2.5 (8)
	1.800	330	4 (11)	0.5 (1)		2.5 (1)	
	2.300	550		0.5 (1)	2.5 (5)		0.5 (1.5)
$0^{+}2^{-+}$	1.633	195	1 (3)				1.5 (4)
	2.540	290		1 (3)			1 (3)
$0^{+}3^{++}$	1.600	180		1 (3)			1.5 (5)
	2.105	400		1.5 (5)			1.5 (5)
$0^{+}4^{++}$	1.940	450		1.5 (4)			
2^+2^{++}	1.295	325	4(2)	2 (7)			

Table 2: Resonances and contributions of the different decay modes to the cross sect of $\gamma\gamma \rightarrow \pi^+\pi^-\pi^+\pi^-$. The contribution of the resonance decay modes into $\gamma\gamma \pi^+\pi^-\pi^+\pi^-0$ reaction is given in parenthesis

The HERMES Experiment

E_e=27.5 GeV, polarized P_b≈50% (longitudinal)
polarized gas H,D,He3, N,...P_T≈85% (longi.,transv.)
RD to be istalled in 2005 (SDS+Sil.+SciFi+Photo-det.)

Spin flavor decomposition: final result!

DSA in semi-inclusive hadron production e(pol)+p,d(pol)-> e'+h+X

HERMES

SMC

∑(quark)=0.347 ,stat.err.=0.024, syst.err.=0.066

- $\Delta u_{v} = 0.603 \pm 0.071$
- $\Delta d_{v} = -0.172 \pm 0.068 = -0.334 \pm 0.112$
- $\Delta s = -0.028 \pm 0.033$
- $\Delta u^{-} 0.002 \pm 0.036$

 0.015 ± 0.034

 0.614 ± 0.082

 $\Delta \overline{d} = -0.054 \pm 0.033$

Published in Phys.Rev.D2004

Relativistic Heavy Ion Collider (RHIC) Pioneering High Energy Nuclear Interaction <u>eXperiment (PHENIX)</u>

Лучший результат 2004 года PHENIX

совместном эксперименте РНЕNIX на B коллайдере релятивистских ядер RHIC (США) в 2004 году обнаружены значительные эллиптические потоки вещества, возникающие в первые мгновения столкновения двух тяжелых ядер, а также сильное подавление выхода адронных струй с большими поперечными импульсами в центральных ядро-ядерных Экспериментальные столкновениях. результаты свидетельствуют о том, что в таких столкновениях формируется новый тип ядерной среды, термализующейся за очень малое время (меньше 1 фм/с) и обладающей признаками характерными для кварк-глюонной материи. Из этих данных удается получить оценки на характеристики этой среды - температуру (Т≈400 МэВ), плотности энергии в области столкновения (15- 20 ГэВ/фм2), а также величину энергетических потерь (~15 ГэВ/фм3) в такой среде для цветных партонов. (ПИЯФ РАН, ИФВЭ, РНЦ КИ)

Эксперимент Е781

 $D^+_s(2632) \rightarrow D^+_s \eta$

First observation of a Narrow Charm-Strange Meson D⁺_{sI}(2632)

Упругоквазимозаичный эффект в кремнии

Схема пучков на У-70

Si19, Si22, Si106 – кристаллические станции для вывода пучка

Si30 – кристаллическая станция для отбора от выведенного в направлении канала 8 пучка около 10⁷ протонов и отклонения их в канал 22

Si84, Si86 – кристаллические станции для испытания кристаллов

Вывод протонного пучка высокой интенсивности кристаллом с упругой квазимозаикой

Пучок в кольце У-70

5.5-10¹² протон/цикл

Выведенный пучок

4.0-10¹² протон/цикл

Эффективность вывода 7

70%

New projects

Эксперимент Panda, GSI

New projects

Эксперимент CBM, GSI

ОКСТ

Изготовление каркаса камер

Зарубежные командировки

n 227 выездов за границу n 116 чел n Швейцария (99) n Германия (70) n США (24) n Италия(8)

ИМПОРТ – ЭКСПОРТ

ИМПОРТ		ЭКСПОРТ		
Количество деклараций	Сумма, \$	Количество деклараций	Сумма, \$	
6	11 837	29	214 943	
24	53 850	44	192 644	
31	280 044	24	97 600	
41	824 313	17	54 082	
28	1 195 888	6	41 964	
130	2 365 932	120	601 233	
	ИМГ Количество деклараций 6 24 31 41 28 130	ИМПОРТКоличество декларацийСумма, \$611 8372453 8502453 85031280 04441824 313281 195 8881302 365 932	ИМПОРТЭКСПКоличество декларацийКоличество деклараций611 837292453 8504431280 0442441824 31317281 195 88861302 365 932120	

2004

52

2 885 730

603 000

CERN,
PSI, Basel(Швейцария)FNAL(США))OSAKA(Япония)

DESY, GSI(Германия)Legnaro(Италия)Saclay(Франция)

16

АДМИНИСТРАЦИЯ ОФВЭ А.А.Воробьев

Д.М.Селиверстов зам.директора А.В.Ханзадеев зам.директора В.Л.Головцов зам.директора Л.С.Иванова зам.директора

В.С.Козлов главный инженер Е.А.Филимонов зам.гл.инженер В.А. Гордеев ученый секретарь Л.Ф.Никитина пом. директора по межд.связям

2005 СНовым годом!

ОФВЭ В 2004 году

ЛАБОРАТОРИИ ОФВЭ

 Лаб. физики элементарных частиц
 Г.Д.Алхазов

 Лаб.короткоживущих ядер
 В.Н.Пантелеев

 Лаб.мезонной физики
 В.В.Сумачев

 Лаб.малонуклонных систем
 С.Л.Белостоцкий

 Лаб.мезонной физики конденсированных сред

Лаб.релятивистской ядерной физики Лаб.физики и техники ускорителей Лаб.мезоатомов Лаб.редких распадов Белостоцкий сред В.П.Коптев В.М.Самсонов Г.А.Рябов Ю.М.Иванов В.А.Гордеев

ФИЗИЧЕСКИЕ ГРУППЫ

Группа мезоядерных реакций Группа ядерных исследований Группа поляризационных эффектов В.Г.Вовченко Группа ядерных взаимодействий Группа радиохимии Группа прикладной радиохимии Группа "АТЛАС" Группа детекторов В-физики

Г.Г.Семенчук Д.М.Селиверстов Ф.Г.Лепехин Е.Г.Алексеев Г.Н.Шапкин О.Е.Федин Б.В.Бочин

НАУЧНО-ТЕХНИЧЕСКИЕ ПОДРАЗДЕЛЕНИЯ

Отдел радиоэлектроникиВ.Л.ГоловцовОтдел трековых детекторовА.Г.КрившичОтдел вычислительных системА.Е.ШевельОтдел криогенной и сверхпроводящейН.Н.ЧерновТехникиИ.А.Е.ФоровОтдел мюонных камерВ.С.Козлов

Централизованное производство *Е.А.Филимонов* ОФВЭ *В.И.Ясюкевич*

Ускорительный отдел *Н.К.Абросимов* Группа обработки информации и автоматизации *С.А.Артамонов* 8 служб ОФВЭ

ЧИСЛЕННОСТЬ ОФВЭ

1998 год	472 чел.
1999 год	441
2000 год	436
2001 год	427
2002 год	410
2003 год	407
2004 год	403
<u>Наука</u> 150	19докторов наук
<u>ИТР</u> 143	86 кандидата наук
<u>Рабочие</u> и лаб. 111	

БЮДЖЕТНОЕ ФИНАНСИРОВАНИЕ ОФВЭ

	2001	2002	20	03 2004
LHC	3450	4880	5040	6200
Школа	245	172	400	420
Ун.уст.	1080	1100	2500	2520
Феникс	300	360	1080	43
Мюон	220	190	190	150
РФФИ	1223	1061	1010	600
ΦЯΦ	241	300	350	
РАН -бюджет	966	2660	3050	
РАН- контракт			8000	11100
Всего:	7725	10723 2	1620	21003 тыс.руб.

контракты и договоры

Германия, США, Швейцария, Италия, Россия

		2001	2002	2003	2004
	\$	20 000	28 000	56 000	101000
]	EURO	18 443	34 730	85 500	71000
(CHF	35 000	60 000	80 000	82500
	Руб.	43 350	220 000	266 000	
Мед	ицина	150 000	1 490 000	1 250 000p	уб.
====					=
]	Всего	2 000 000	4 800 000	8 000 000	8 000 000руб

Защита диссертаций

п Н.К. Абросимов д.ф.м.н.

n А.А. Изотов к.ф.м.н. n Д.Е. Баядилов к.ф.м.н.

Синхроциклотрон

Ускоритель отработал в 2004 году 1846 часов

Четыре старых теплообменника на 2.5 МВт, каждый из 6 труб диаметром 330 мм, длиной 4 м.

После 35 лет эксплуатации теплообменники пришли в полную негодность.

- Новые пластинчатые теплообменники на 2.8 МВт.
- 2. Стоимость: 450 тыс. руб.
- 3. Монтаж, демонтаж и наладка выполнены силами ускорительного отдела.

Введен в строй новый резервный агрегат питания для магнита Е-9 мощностью 1.6 МВт и током 6000 А

Усовершенствование инфраструктура в 2004 году :

Ремонт вестибюля корпуса 2а. 450 тыс. руб. Ремонт конференц зала корпуса 2а Ремонт крыши 380 тыс. машинного зала ∫руб. Ремонт измерительного зала синхроциклотр она силами PCO

Протонная терапия

n Облучено больных за год - 29

n Модернизация и автоматизация комплекса ПЛТ

Зал облучения

З Изохронный циклотрон ГИЦ 3.1 Магнитная система

Развертка сечения сектора и долины вдоль радиуса

- Секторные накладки: 1. вместо 10 мм накладка 5 мм;
 - вместо 18 мм накладка 9 мм;
 - 3. добавлено 3 мм.

Долинные шиммы:

- внутри гармонической обмотки h = 45 мм;
 - дополнительный шимм h = 45 мм;
 - гармоническая обмотка.

Произведен подбор шимм по измерениям в одном секторе для получения изохронного поля на конечных радиусах 55-80 см.

Изготовлен набор подобранных шимм на все сектора. Стоимость материала 25 тыс. руб., зарплата 10 тыс. руб.

3 Изохронный циклотрон ГИЦ 3.1 Магнитная система

Результаты шиммирования среднего поля на последних радиусах.

3 Изохронный циклотрон ГИЦ 3.1 Магнитная система

3D расчеты магнитного поля.

3D график расчетного магнитного поля

3 Изохронный циклотрон ГИЦ 3.2 ВЧ система.

Проведены расчеты четверть волнового И полуволнового коаксиальных резонаторов (фидера связи) для связи высокочастотного (ГВЧ) генератора мощностью 40 кВт С Расчеты дуантом. проверены откорректированы на полномасштабных макете дуанта и фидере связи. Отработана методика настройки совместно с ГВЧ, фидером связи и дуантом.

З Изохронный циклотрон ГИЦ 3.2 Н⁻⁻ источник.

В 2003 году установлено, что для получения в ППИ Н- ионов с током 3 мА необходимо увеличить мощность разряда до 1 КВт и ввести охлаждение анода и катода. В 2004 году введено охлаждение анода дисциллированной водой под давлением 10 Атм. Стоимость насоса на 10 Атм. и теплообменника ~ 70 тыс.руб.

Получен в нестабильном режиме ток > 3 мА. Остается решить вопрос о долговременном режиме работы.

5 Малые ускорители.

В группе малых ускорителей проводятся работы по разработке ППИ Н⁻ ионов, представленные выше.

Кроме того на ЭСУ проведены исследования:

- 1. Механизмов старения газоразрядных детекторов для экспериментов на LHC (с ОФВЭ),
- 2. Старения электродов водородной камеры для мю катализа (А.А.Воробьев, Г.Г.Семенчук).
- 3. Полупроводниковых материалов для микроэлектроники (совместно с ФТИ РАН).

В 2004 году опубликовано 4 печатных работы.

Эксперименты на СЦ

ИРИС

Исследование нейтроноизбыточных и нейтронодефицитных ядер, удаленных от полосы β-стабильности

Карта нуклидов

Методика эксперимента

Использование специальной конструкции мишени с лазерным ионным источником:

Впервые использована лазерная мишень:

увеличение эффективности в 5 раз

tungsten container H inner target container Η Ð Laser ion source Laser laser beam beams. Extraction electrode target material \oplus 3 Target_material tantalum plugs \odot proton beam extraction electrode Target container Proton beam tantalum current connectors

увеличение селективности в 10 раз
Изменения среднеквадратичных зарядовых радиусов и магнитные моменты, вычисленные для измеренных нуклидов

Isotope	$D < r^2 >_{A-160}, Fm^2$	μ, n.m.	
^{145m} Gd (I=11/2)	-1.76(5)	-1.0(0.2)	
¹⁴⁵ Gd (I=1/2)	-1.79(3)	-0.74(5)	
^{143m} Gd (I=11/2)	-1.69(5)	-	

Изотопические изменения среднеквадратичных зарядовых радиусов Gd (Z=64) относительно ¹⁴⁶Gd в сравнении с данными для изотопов Eu (Z=63) с тем же числом нейтронов

Разработка новых высокоэффективных мишенноионных устройств, 2004 г.

Сотрудничество

Российские лаборатории:

•Институт спектроскопии РАН,

Зарубежные лаборатории:

•CERN, лаборатория ISOLDE, Швейцария.
•GANIL, проект SPIRAL-II, Франция.
•LNL (Legnaro), проект SPES, Италия.
•LNS (Catania), проект EXIT, Италия.
•Orsay (Paris), проект ALTO, Франция.

•EURISOL (International collaboration).

TRIUMF (Canada) - выразил желание участвовать в разработке и исследовании UC мишеней высокой плотности.

Влияние ядерной среды на параметры PN

амплитуды

-Проведён сеанс Не-4 мишени (разр.ОКСТ) - Новая электроника считывания с проп. камер (ОРЭ) 2003-2005

Ca-40,Li-6, C-12 ½ S published Phys.Rev.C Febr. 2004

Схема экспериментальной установки для измерения сечений деления

Энергетические зависимости полных сечений деления ядер ^{233, 235, 238}U протонами

Выполнены первые измерения сечения реакции π -р \rightarrow η n на жидко-водородной мишени при импульсе налетающих π -мезонов 710 МэВ/с.

μSR

Рис. 1. Фазовая диаграмма сплава Cu1-х Mnx

Time-of-Flight Spectrum

isochronous m/q range: 2.56 – 2.65

Germany CSI JLU Giessen JCU Mainz TU Minchen

ILIMA

10 countries 18 institutions

S.Tup Marsaw

PIAPI Univ. St. Petersburg

INP OIST

66 participants

Univ. Surray Univ. Manchester

MSU

<u>IIMP Lanzhou</u>

Исследование бета-распада ядер вблизи дважды магического ядра 100Sn GSI Л.Х. Батист, Ф.В. Мороз

Систематика интегральных величин приведенной вероятности перехода Гамова-Теллера ядер близких к ¹⁰⁰Sn

Исследование короткоживущих нуклидов на установке IGISOL в Ювяскюля

Ю.Н. Новиков, Л.Х. Батист, Г.К. Воробьев, А.В. Попов

Ааборатория Физики Элементарных Частиц

Precision Measurement of Muon Capture on the Proton "µCap experiment"

 $\mu^- + p \rightarrow \nu_{\mu}^+ n$

www.npl.uiuc.edu/exp/mucapture/

Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia Paul Scherrer Institut, PSI, Villigen, Switzerland University of California, Berkeley, UCB and LBNL, USA University of Illinois, Urbana-Champaign, USA Universite Catholique de Louvain, Belgium TU Munich, Garching, Germany Boston University, USA University of Kentucky, USA

@ PSI

µCap

Система очистки водорода.

Схема эксперимента по измерению параметра Р на пионном пучке ускорителя ИТЭФ.

Сравнение результатов измерений с предсказаниями ПВА.

Импульс пучка отрицательных ПИОНОВ -2,07 ГэВ/с Открытые точки – результаты предыдущих измерений, выполненных коллаборацией ПИЯФ-ИТЭФ в 1991 году с использованием другой поляризованной мишени. Сплошные точки результаты

2004 года.

На пучке меченых фотонов электронного ускорителя МАМІ-В в Майнце (Германия)

Эксперимент по измерению магнитного дипольного момента $\Delta^+(1232)$ изобары. Эксперимент осуществляется на пучке линейно-поляризованных фотонов с использованием детектора Crystal Ball. Исследуется реакция $gp \rightarrow g \phi^0 p$, фотоны и протоны регистрируются детектором Crystal Ball и дополнительным форвардным детектором TAPS. Первый этап эксперимента булет завершен к апрелио 2005 г.

В левой части рисунка – схематической изображение экспериментальной установки с детектором Crystal Ball на ускорителе МАМІ в Майнце, в правой части детектор Crystal Ball в разрезе.

Схематическое изображение экспериментальной установки с детектором Crystal Barrel на ускорителе ELSA в Бонне. The observation of new mesons with the L3 Experiment

Analysis results of the $\gamma\gamma
ightarrow \pi^+\pi^-\pi^0$

Table 1: Masses, widths and production of the $\Gamma_{\gamma\gamma}$ partial width and the branch into 3π for the observed resonances.

Resonance	M (MeV)	Γ (MeV)	$\Gamma_{\gamma\gamma}Br(3\pi)(KeV$
$a_2(1320)$	$1300 \pm 2 \pm 4$	$126 \pm 6 \pm 20$	$0.65 \pm 0.02 \pm 0.02$
$a_2(1700)$	$1722\pm9\pm15$	$340\pm20\pm20$	$0.37^{+0.12}_{-0.08}\pm0.10$
$a_2(2030)$	$2050\pm10\pm10$	$200 \pm 22 \pm 30$	$0.11 \pm 0.04 \pm 0.03$
$\pi(1300)$	1350 ± 40	320 ± 50	≤ 0.8
2^{-+}	$1860 \pm 12 \pm 10$	$360\pm30\pm40$	$0.15 \pm 0.03 \pm 0.03$
$\pi_2(1670)^*$	1670	260	≤ 0.1

 * - results of the fit with the 2^{-+} signal fixed as $\pi_2(1670)$ with values taken fre

$I^G J^{PC}$	Mass	Width	ρρ	$a_1\pi$	$\pi'\pi$	$f_0 f_0$	$a_2\pi$
	(MeV)	(MeV)	(%)	(%)	(%)	(%)	(%)
	1.290	260		12 (20)	6 (5)		
$0^{+}0^{++}$	1.420	700		1 (3)	2 (2)	4 (1)	
	2.045	245	2 (6)	0.5 (1)	6 (8)	2 (1)	
	1.275	185		15 (30)		1 (0.5)	1.5 (5)
$0^{+}2^{++}$	1.550	175		3 (7)	1 (2)	1 (0.5)	2.5 (8)
	1.800	330	4 (11)	0.5 (1)		2.5 (1)	
	2.300	550		0.5 (1)	2.5 (5)		0.5 (1.5)
$0^{+}2^{-+}$	1.633	195	1 (3)				1.5 (4)
	2.540	290		1 (3)			1 (3)
$0^{+}3^{++}$	1.600	180		1 (3)			1.5 (5)
	2.105	400		1.5 (5)			1.5 (5)
$0^{+}4^{++}$	1.940	450		1.5 (4)			
2^+2^{++}	1.295	325	4(2)	2 (7)			

Table 2: Resonances and contributions of the different decay modes to the cross sect of $\gamma\gamma \rightarrow \pi^+\pi^-\pi^+\pi^-$. The contribution of the resonance decay modes into $\gamma\gamma \pi^+\pi^-\pi^+\pi^-0$ reaction is given in parenthesis

The HERMES Experiment

E_e=27.5 GeV, polarized P_b≈50% (longitudinal)
polarized gas H,D,He3, N,...P_T≈85% (longi.,transv.)
RD to be istalled in 2005 (SDS+Sil.+SciFi+Photo-det.)

Spin flavor decomposition: final result!

DSA in semi-inclusive hadron production e(pol)+p,d(pol)-> e'+h+X

HERMES

SMC

∑(quark)=0.347 ,stat.err.=0.024, syst.err.=0.066

- $\Delta u_{v} = 0.603 \pm 0.071$
- $\Delta d_{v} = -0.172 \pm 0.068 = -0.334 \pm 0.112$
- $\Delta s = -0.028 \pm 0.033$
- $\Delta u^{-} 0.002 \pm 0.036$

 0.015 ± 0.034

 0.614 ± 0.082

 $\Delta \overline{d} = -0.054 \pm 0.033$

Published in Phys.Rev.D2004

Relativistic Heavy Ion Collider (RHIC) Pioneering High Energy Nuclear Interaction <u>eXperiment (PHENIX)</u>

Лучший результат 2004 года PHENIX

совместном эксперименте РНЕNIX на B коллайдере релятивистских ядер RHIC (США) в 2004 году обнаружены значительные эллиптические потоки вещества, возникающие в первые мгновения столкновения двух тяжелых ядер, а также сильное подавление выхода адронных струй с большими поперечными импульсами в центральных ядро-ядерных Экспериментальные столкновениях. результаты свидетельствуют о том, что в таких столкновениях формируется новый тип ядерной среды, термализующейся за очень малое время (меньше 1 фм/с) и обладающей признаками характерными для кварк-глюонной материи. Из этих данных удается получить оценки на характеристики этой среды - температуру (Т≈400 МэВ), плотности энергии в области столкновения (15- 20 ГэВ/фм2), а также величину энергетических потерь (~15 ГэВ/фм3) в такой среде для цветных партонов. (ПИЯФ РАН, ИФВЭ, РНЦ КИ)

Эксперимент Е781

 $D^+_s(2632) \rightarrow D^+_s \eta$

First observation of a Narrow Charm-Strange Meson D⁺_{sI}(2632)

Упругоквазимозаичный эффект в кремнии

Схема пучков на У-70

Si19, Si22, Si106 – кристаллические станции для вывода пучка

Si30 – кристаллическая станция для отбора от выведенного в направлении канала 8 пучка около 10⁷ протонов и отклонения их в канал 22

Si84, Si86 – кристаллические станции для испытания кристаллов

Вывод протонного пучка высокой интенсивности кристаллом с упругой квазимозаикой

Пучок в кольце У-70

5.5-10¹² протон/цикл

Выведенный пучок

4.0-10¹² протон/цикл

Эффективность вывода 7

70%

New projects

Эксперимент Panda, GSI

New projects

Эксперимент CBM, GSI

ОКСТ

Изготовление каркаса камер

Зарубежные командировки

n 227 выездов за границу n 116 чел n Швейцария (99) n Германия (70) n США (24) n Италия(8)

ИМПОРТ – ЭКСПОРТ

ИМПОРТ		ЭКСПОРТ	
Количество деклараций	Сумма, \$	Количество деклараций	Сумма, \$
6	11 837	29	214 943
24	53 850	44	192 644
31	280 044	24	97 600
41	824 313	17	54 082
28	1 195 888	6	41 964
130	2 365 932	120	601 233
	ИМГ Количество деклараций 6 24 31 41 28 130	ИМПОРТКоличество декларацийСумма, \$611 8372453 8502453 85031280 04441824 313281 195 8881302 365 932	ИМПОРТЭКСПКоличество декларацийКоличество деклараций611 837292453 8504431280 0442441824 31317281 195 88861302 365 932120

2004

52

2 885 730

603 000

CERN,
PSI, Basel(Швейцария)FNAL(США))OSAKA(Япония)

DESY, GSI(Германия)Legnaro(Италия)Saclay(Франция)

16

АДМИНИСТРАЦИЯ ОФВЭ А.А.Воробьев

Д.М.Селиверстов зам.директора А.В.Ханзадеев зам.директора В.Л.Головцов зам.директора Л.С.Иванова зам.директора

В.С.Козлов главный инженер Е.А.Филимонов зам.гл.инженер В.А. Гордеев ученый секретарь Л.Ф.Никитина пом. директора по межд.связям

2005 СНовым годом!