Лаборатория мезоатомов в 2004

Ю.М.Иванов

Сотрудники лаборатории мезоатомов

С.А.Вавилов Л.А.Вайшнене Н.П.Волков Ю.А.Гавриков А.С.Денисов В.В.Иванов Ю.М.Иванов А.А.Котов А.В.Кравцов Л.П.Лапина П.М.Левченко

Д.Л.Николаев Л.Ф.Павлова А.А.Петрунин Т.Н.Савченкова В.В.Скоробогатов В.М.Суворов В.М.Суворов В.В.Сулимов С.И.Труш А.И.Щетковский Л.А.Щипунов

Направления работы

- n CMS
 - Завершение проекта создания мюонных камер CMS

n Каналирование

- Вывод протонного пучка высокой интенсивности в ИФВЭ
- Создание прототипа кристаллического ондулятора

n Мезоатомы

- Разработка многоэлементного полупроводникового детектора
- n Ядерные реакции
 - Исследование деления тяжелых ядер протонами и нейтронами

Ю.М.Иванов

Упругоквазимозаичный эффект в кремнии

Кристаллы для вывода протонного пучка высокой интенсивности

Плоскость(111)Длина по пучку2.65 ммИзгиб400 мкрад

Схема пучков на У-70

Si19, Si22, Si106 – кристаллические станции для вывода пучка

Si30 – кристаллическая станция для отбора от выведенного в направлении канала 8 пучка около 10⁷ протонов и отклонения их в канал 22

Si84, Si86 – кристаллические станции для испытания кристаллов

Схемы вывода протонного пучка с помощью изогнутых кристаллов

Стенд для исследования кристаллов вблизи поглотителя пучка

Ю.М.Иванов

Кристаллическая станция

Ученый Совет ОФВЭ, 28 декабря 2004

Ю.М.Иванов

Кристаллическая станция

Ю.М.Иванов

Установка кристаллов

Ю.М.Иванов

Установка кристаллов

Вывод протонного пучка высокой интенсивности кристаллом с упругой квазимозаикой

Пучок в кольце У-70 5.5-10¹² протон/цикл

Выведенный пучок

4.0-10¹² протон/цикл

Эффективность вывода 70%

Ю.М.Иванов

Планы

п Подготовка эксперимента по выводу протонов из SPS в CERN
 п Коллимация и вывод на LHC ?
 п Отклонение дифракционных протонов в TOTEM ?

Создание О-образных кристаллов для У-70

Типичные размеры: 5 x 5 x 50 мм³

Требования к кристаллу

п Высота рабочей области ~5 мм
 п Ширина рабочей области ~1 мм
 п Длина по пучку 3-5 мм
 п Толщина нарушенного слоя ~1 мкм
 п Точность ориентации ~1
 п Угол изгиба <1.5 мрад

Первые О-кристаллы для опытов на У-70 в 1998-1999 гг.

Интерференционная картина от изогнутого торца О-кристалла

Ю.М.Иванов

Основные этапы работы над О-кристаллами

n Январь-июнь 2003 – изготовление параллелепипеда из кремния

- Вырезка ориентированного параллелепипеда из слитка
- Шлифовка и ориентировка 6 граней с точностью < 1'
- Глубокая полировка 6 граней с плоскостностью < 2 колец
- n Август-октябрь 2003 разрезка параллелепипеда и пробное изготовление нескольких О-кристаллов
- n Ноябрь 2003-август 2004 шлифовка и полировка заготовок, выборка пазов, ручная доводка

Ю.М.Иванов

Изготовление параллелепипеда из кремния

Ю.М.Иванов

Изготовление прецизионного отрезного станка

Ю.М.Иванов

Обработка граней, обмер деталей

Ю.М.Иванов

Выборка паза

Изгиб кристаллов

Проверка кристаллов на рентгеновском дифрактометре

Готовые О-кристаллы

Ю.М.Иванов

Создание прототипа кристаллического ондулятора

n University of Ferrara, Italy
n LNF INFN, Frascati, Italy
n IHEP, Protvino, Russia
n PNPI, S-Petersburg, Russia
- Yu.M.Ivanov, A.A.Petrunin, V.V.Skorobogatov, L.P.Lapina, V.V.Ivanov

Goals of research

 n To learn preparing crystals with regular periodical deformations
 n To observe and study undulator radiation from periodically bent crystals

n To develop compact bright source of hard X-rays for 0.1-1.0 MeV range

Generation of undulator radiation with magnets

e s trajectory

The maximum trajectory angle is

$$\Theta_{\rm w} = x'_{\rm max} = \frac{1}{\gamma} \frac{\lambda_{\rm u} e \widetilde{B}}{2\pi m_0 c}$$
 or

$$\Theta_{W} = \frac{K}{\gamma}$$

where K is wiggler or undulator parameter

$$K = \frac{\lambda_{\rm u} e\widetilde{B}}{2\pi m_0 c}$$

undulatorif
$$K \le 1$$
 i.e. $\Theta_w \le 1/\gamma$ wigglerif $K > 1$ i.e. $\Theta_w > 1/\gamma$

Undulator radiation

$$\lambda_{\rm I}[{\stackrel{\rm O}{\rm A}}] = \frac{13.056 \ \lambda_{\rm u}[\rm cm]}{E^2[{\rm GeV}]} \ (1 + K^2/2)$$

$$\sigma_{\gamma'} \cong \sqrt{\frac{\lambda_n}{L}} = \frac{1}{\gamma} \sqrt{\frac{(1+K^2/2)}{2Nn}}$$

$$\tilde{S}_n = 1.431 \times 10^{14} NQ_n I[A]$$

Ю.М.Иванов

Characterisation of samples with X-rays: scheme

Characterisation with X-rays: typical diffraction peaks

Ю.М.Иванов

Characterisation with Xrays: 6/7-groove sample

6-groove side

7-groove side

Characterisation with X-rays: 6/7-groove sample

Fit with function:

const-X*11"/3.6mm+5"*SIN(2p(X-0.53mm)/0.45mm)

Characterisation with Xrays: 6/7-groove sample

n Amplitude of SIN function gives a maximal particle trajectory angle Θ due to periodical bending of crystal

n Product of the θ and relativistic factor γ gives an undulator factor K

n Measured 6/7-groove sample has K~0.5 for 10 GeV positrons

Ю.М.Иванов

Estimated parameters of undulator radiation from 6/7-groove sample

n Energy of first harmonics

ε₁~1.7 MeV

- n Relative bandwidth $\Delta\omega/\omega \sim 16\%$
- n Half-width of angular distribution ~ 3"
- n Flux in central cone ~0.04 phot/positron

Установка для исследования излучения кристаллов

Ю.М.Иванов

Разработка многоэлементного полупроводникового детектора

Участники работы:

n ЛМА, ОРЭ, ОПЯД ОНИ, КО ПИЯФ, «Позитрон»

Статус работы:

- n Изготовлен CdTe со стрипами 50 мкм
- n Закончено проектирование электроники
- n В основном закуплены компоненты

Структурная схема электроники многоэлементного детектора

CdTe детектор и фронтэнд платы

Публикации

В.И.Котов, А.Г.Афонин, В.Т.Баранов, В.М.Бирюков, А.А.Кардаш, В.А.Маишеев, В.И.Терехов, Е.Ф.Троянов, В.Н.Чепегин, Ю.А.Чесноков (Серпухов, ИФВЭ), Ю.М.Иванов (Гатчина, ПИЯФ), "Вывод пучка протонов из ускорителя ИФВЭ с помощью коротких кристаллов кремния", ЭЧАЯ.

Ю.М.Иванов, А.А.Петрунин, В.В.Скоробогатов, "Наблюдение эффекта упругой квазимозаичности в изогнутых монокристаллах кремния", Письма в ЖЭТФ.