Heavy I ons @ LHC with ALICE

V. Samsonov

on behalf of ALICE for HEPD PNPI session

OUTLINE

- Heavy Ion Physics (in VERY general terms)
- ► ALICE Project
 - Collaboration
 - Goals
 - Detector
 - Performance

Heavy I on Collisions: What for ?

Phase Structure of QCD

Investigation of the hadron matter states at extreme temperatures and densities is important for understanding of:

Ø The fundamental properties and QCD predictions such as:

§ Confinement
 § QCD mass generation
 via broken chiral symmetry
 Ø The physics of the early
 Universe evolution

Iow T, large ρ: <u>colour superconductor ?</u>

- <qq>≠0: quark-pair condensation (Cooper pairs)
- a) 2 flavour SC: chiral symmetry restored
- b) 3 flavour SC: chiral symmetry broken (again)

medium T, medium p: tricritical point ?

- seperates 1st & 2nd order phase boundaries
- leads to large event-by-event fluctuations

Vladimir Samsonov

The QCD Phase Transition

QCD prediction:

increase of ε => new phase of matter

m, ≈150 MeV

Heavy I on Collision

SPS Experiments

Vladimir Samsonov

Heavy I ons in LHC

- energy
 Ös = 5.5 TeV/A (Pb-Pb), 14 TeV (pp)
- beams
 - possible combinations: pp, pA, AA
 - initial emphasis on Pb-Pb, Ar-Ar to vary energy density
 - pp and pA comparison runs
 - later options: different ion species, lower energy AA and pp

	Pb-Pb	Ar-Ar	рр
L [cm ⁻² s ⁻¹]	10 ²⁷	3x10 ²⁷ to 10 ²⁹	10 ²⁹ to 3x10 ³⁰
Rate [kHz]	8	8 to 250	7 to 200

- pre- RHIC guess (QM2001)
 - still expect conditions to be significantly different
 - only LHC will give the final answer !

Central collisions	SPS	RHIC	LHC	
s ^{1/2} (GeV)	17	200	5500	
dN _{ch} /dy	430	700- 1500	2-8 x10 ³	
ε (GeV/fm ³) _{τ0=1fm}	2.5	3.5-7.5	15-40	
V _f (fm ³)	10 ³	<mark>(?)</mark> 7x10 ³	2x10 ⁴	
τ _{QGP} (fm/c)	<1	1.5-4.0	4-10	
τ ₀ (fm/c)	~1	~0.5	<0.2	

Significant gain in e, V, t ~ x 10 SPS -> LHC ~ x 3-5 RHIC -> LHC

Vladimir Samsonov

Tracking Challenge

Hard Probes @ LHC

- LHC: the full 'spectrum'
 - soft -> semihard -> hard (>> 20 GeV)
 - high p_t important in order to leave even tails of 'hydrodynamics'

Au+Au (b<3) $\rightarrow \pi^{d}$ $\sqrt{s} = 20, 200, 5500 \text{ AGeV}$

Jets in ALICE $|\eta| < 0.9$

- ideal energy for jet-quenching: around 100 GeV
 - pQCD applicable
 - jets measurable above soft background
 - energy loss still relatively large effect

Reasonable

~300 GeV

rate up to E_{T}

DE/E ~ O(10%), decreasing with E! •

	p _t jet > (GeV/c)	jets/event	accepted jets/month
>	5	3.5 10 ²	4.9 10 ¹⁰
	50	7.7 10 ⁻²	1.5 10 ⁷
	100	3.5 10 ⁻³	8.1 10 ⁵
	150	4.8 10 ⁻⁴	1.2 10 ⁵
	200	1.1 10 ⁻⁴	2.8 10 ⁴

Pb Pb rates:

First TRD studies ~ 1Hz trigger rate for central PbPb collisions and **p**_t jet > 100 GeV/c real jets triggers 0.7/s false triggers **0.3/s**

Vladimir Samsonov

Heavy Quarks & Quarkonia

- copious heavy quark production
 - strange @ SPS ► charm @ LHC

•jet-quenching with heavy quarks

• beauty Y - dσ/dy LHC ~ 20 x RHIC, even at LHC Y" is difficult

ALICE Collaboration

ALICE Subsystems

- Tracking (H=0.5 T; robust, redundant, from 60 MeV to 100 GeV)
 - ITS 4 cm < r < 44 cm, stand-alone tracking for low P_T
 - TPC 90 cm < r < 250 cm
 - TRD 290 cm < 370 cm
- Particle Identification
 - TPC (Track curvature, dE/dx)
 - HMPID (Cerenkov ring imaging)
 - TOF
 - TRD
- Forward detectors (centrality, multiplicity, timing, trigger, BG rejection)
 T0, V0, SiFMD, HPMD, ZDC
- Calorimeters (PHOS, EmCal?)
- Forward Muon Arm

ITS (Inner Tracking System) A low momentum spectrometer

- Tracking and identification of low p_T (< 100 MeV/c)
- Primary & secondary vertex (resolution < 100 μm)
- Assist TPC tracking
- High particle densities ($\epsilon < 90$ particles/cm²)
- 6 layers (R_{ip} = 4, 7, 15, 24, 39, 44 cm) and 3 technologies
 Pixel (SPD)
 Drift (SDD)
 Analog readout

Inner Tracking System (ITS)

Material Budget: < 1% X₀ per layer !

System testing and setting up of series production

Vladimir Samsonov

TPC (Time Projection Chamber) Hadron/lepton spectrometer @ $p_T < 10$ GeV/c

Track finding (2-tracks resolution ∆p < 5 MeV/c)
Momentum measurement (few % below 5 GeV/c, 9% @ 100 GeV/c)
Particle Identification dE/dx (5.3 - 6.8 % depending on multiplicity)
Track matching with ITS, TOF/TRD (> 90 %)

TRD (Transition Radiation Detector)

High p_T electron spectrometer

- •Electron identification for $p_T > 1$ GeV/c
- •e/ π discrimination (rejection factor 100 @ pT > 3 GeV/c): light vector mesons, charmonium
- •Momentum resolution & matching to TPC:
- 5% @ 5 GeV/c, mass resolution 100 MeV/c2 @ Y •High pT (> 3 GeV/c) hadron trigger (jet)

[h]	Spatial resolution [rj , z] [mm]	Gas MWPC	e [cm] X/X _o	# channels [M]	Occupancy [%]	EAR
0.9	400	Xe(85%) CO ₂	6x4.8 / 14.3%	1.16	34	

Tracking

robust, redundant tracking from 60 MeV to 100 GeV

- modest soleniodal field (0.5 T) => easy pattern recognition
- long lever arm => good momentum resolution
- silicon vertex detector (ITS)
 - stand-alone tracking at low p_t
- Time Projection Chamber (TPC)
- Transition Radiation Detector (TRD)

90 cm < r < 250 cm

290 cm < 370 cm

4 cm < r < 44 cm

Time of Flight (TOF) Hadron spectrometer

Vladimir Samsonov

HMPID

(High Momentum Particle Identification)

•High momentum hadron spectrometer

•Hadron identification $p_T > 1$ GeV/c •Discrimination p/K $p_T < 3$ GeV/c, K/p $p_T < 5$ GeV/c

Vladimir Samsonov

High Momentum Particle Identification

7 modules, each ~1.5 x 1.5 m^2

5

STAR data

PbW0₄: Very dense: $X_0 < 0.9$ cm Good energy resolution (after 6 years R&D): stochastic 2.7%/E^{1/2}

stochastic2.7 / 0/Enoise2.5%/Econstant1.3%

PHOS

(Photon Spectrometer)

for photons, neutral mesons and g-jet tagging

- single arm em calorimeter
 - dense, high granularity crystals
 - novel material: **PbW0**₄
 - ~ 18 k channels, ~ 8 m²
 - cooled to -25°

PHOS

mass production of crystals started

- Apatity, Russia
- Light Read-out
 - APD's (Avalanche Photo Diodes)
 - FEE still in design phase

PHOS 256 Gannel Prototype

Collaboration:

- Russia + Norway
- China (?)
- **Needs strengthening !**

Particle Identification **stable hadrons (**p, **K**, **p): 100 MeV** dE/dx in silicon (ITS) and gas (TPC) + Time-of-Flight (TOF) + Cerenkov (RICH) dE/dx relativistic rise under study => extend PID to several 10 GeV 22 Alice uses ~ all decay topology (K⁰, K⁺, K⁻, L) known techniques! still under study, but expect K and Λ decays up to at least 10 GeV leptons (e, m), photons, p⁰ electrons in TRD: p > 1 GeV π/K TPC + ITSK/p muons: p > 5 GeV(dE/dx) e/π π^0 in PHOS: 1 < p < 80 GeV π/K e /π ////// TOF K/p π/K **HMPID** K/p (RICH) 3 0 2 4 5 p (GeV/c) TRD e/π γ/π^0 PHOS December 2003 36 Vladimir Samsonov 10 100 p (GeV/c)

Muon Chambers

Station 3-4: Slats

Разработано и изготовлено оборудование для производства модулей мюонных камер

Vladimir Samsonov

December 2003

Оборудована и подготовлена к началу серийного производства трековых камер мюонного спектрометра чистая сборочная зона.

Muon Magnet

•Dipole Magnet

- 0.7 T and 3 Tm
- -4 MW power, 800 tons
- World's largest warm dipole
- Progress:
 - Coil production in progress in France
 - Yoke finished end 2002 in Russia

cheap mass market components Industry & Moore's law

The Challenge:

make 10,000 mice do the work of one elephant

new computing paradigm: The GRID

Vladimir Samsonov

ALICE Running Scenario (endorsed at LHCC WS) 1 LHC year = 10⁷ s of pp + 10⁶ s of AA

- Year 1 (2007)
 - pp: detector commissioning & physics data
 - PbPb physics pilot run: global event-properties, observables with large cross-section
- Year 2 (in addition to pp @ 14 TeV, L< 3.10³⁰ cm⁻²s⁻¹)
 - PbPb @ L~ 10²⁷ cm⁻²s⁻¹: rare observables
- Year 3
 - p(d, α)Pb @ L~ 10²⁹ cm⁻²s⁻¹: Nuclear modification of structure function
- Year 4 (as year 2)
- Year 5
 - ArAr @ L~ 10^{27} - 10^{29} cm⁻²s⁻¹: energy density dependencies
- Options for later
 - pp @ 5.5 TeV, pA (A scan to map A dependence), AA (A scan to map energy-density dependence), PbPb (energy-excitation function down towards RHIC),

Vladimir Samsonov

Спасибо за внимание

Vladimir Sam

В 2003 году проведена работа по подготовке производства мюонных камер

- Разработаны и изготовлены
 устройства для прецизионной
 обрезки печатных плат, для
 института Саха (Калькутта,
 Индия) и INFN (Каглиари,Италия)
- Разработаны и изготовлены 4
 высоковольтных испытательных стендов для модулей
- q Разработана, изготовлена и испытана намоточная машина
- Разработаны и изготовлены 4
 автоматизированных устройств
 для измерения натяжения
 проволок в модуле
- Разработан, изготовлен и
 испытан стенд для испытаний
 модулей с помощью β-частиц

Оборудована и подготовлена к
 началу серийного производства
 трековых камер мюонного
 спектрометра чистая сборочная зона.

q Участие в изготовлении,тестировании и анализе прототипов модулей трековых камер

q Выполнен проект Мюонного фильтра

Vladimir Samsonov

Vladimir Samsonov

US proposal: large emcal

jet[0]-jset[0]

•large area electromagnetic calorimeter (a la STAR)

- hadronic energy in TPC + em energy in calorimeter
- trigger on jets, improve energy resolution, γ -jet coincidences (with PHOS)

Trigger Counters T0/V0/PMD

V0: Scintillator + PM

PMD Photon Multiplicity Detector

Vladimir Samsonov

Vertex Finding

little material + good resolution + close to vertex = 292.1 ± 9.25 primary vertex: = 1.806 ± 0.1583 15 mm (rf) x 5 mm (z) 10 9 8 7 6 5 Ztrue = 5 cm Resolution (Jum) secondary vertices: Ca heavy quarks (100's mm) hyperons (cm) Ph $d_0 < cut$ **à**resonances**ITS** Primary vertex d_0 > cut **à** D,B mesons 2000 8000 10000 4000 6000 Multiplicity (-0.5≤ Y≤0.5) Entries/evt π^0 220 c p, > 1 GeV/c Kalman filter mpact parameter resolution [μ m] 200 0 180 Riemann method ω 160 J/Ψ 140 impact parameter d_0 (rf) 10 120 100 -3 80 10 60 3's 40 20 10 200 400 800 0 600 1000 December 0^L 10⁻¹ 10 1 d0 (µm)

p_[GeV/c]

