Исследование ¹²Ве, ¹⁴Ве и ⁸В в эксперименте S247 (IKAR)

А. Инглесси

План доклада

- Введение
- Экспериментальный метод
- Результаты предыдущих экспериментов
- Мотивация
- Схема установки и анализ данных
- Обсуждение результатов
- Заключение

Плотность вещества в атомах

²⁰⁸Pb

$$R = r_0 A^{1/3}$$

6.58 fm
¹¹Li
 $R = r_0 A^{1/3}$
¹¹Li

$$r_{rms} = < r^{2} > ^{1/2} = \left(\frac{\int r^{2} \rho(r) 4 \pi r^{2} dr}{\int \rho(r) 4 \pi r^{2} dr} \right)^{1/2}$$

Экспериментальный метод

Упругое рассеяние протонов промежуточных энергий – известный метод исследования распределения ядерной материи в стабильных ядрах. (G. Alkhazov et al., Phys. Rep. 42 (1978) 89)

радиоактивные пучки => исследование экзотических ядер (уже применено к исследованию богатых нейтронами изотопов Не и Li)

Форма сечения и гало-структура

наклон do/dt - радиус вещества R_m

Предыдущие эксперименты

<u>для сравнения:</u> $R_{He}^4 = 1.49 \pm 0.03$ fm, $R_{Li}^9 = 2.44 \pm 0.06$ fm

^{6,8}Не and ¹¹Li: выраженная гало-структура

S. R. Neumaier et al., Nucl. Phys. A 712 (2002) 247; G. D. Alkhazov et al., Nucl. Phys. A 712 (2002) 269

A. V. Dobrovolsky et al., Nucl. Phys. A 766 (2006) 1

Мотивация

¹⁴Be → ¹²Be+n+n 2- (или 4-) нейтронное гало и кор из ¹²Be (или ¹⁰Be) / shell model => распределение вещества ¹²Be → ¹⁰Be+n+n кор ¹⁴Be, нарушение оболочечной структуры, исчезновение N=8 => гало-структура ⁸B → ⁷Be + p кандидат на 1р-гало S_{17} -фактор в реакции захвата протона ⁷Be(p,γ)⁸B

Cxema GSI

• UNILAC

линейный ускоритель

• SIS синхротрон

 FRS фрагмент-сепаратор

Фрагмент-сепаратор FRS

первичный пучок: ¹²С

первичный пучок: ¹⁸О

• ⁸B

• ¹²Be, ¹⁴Be

Экспериментальная установка

- •**MWPCs:** угол рассеяния налетающей частицы Θ_s
- •ALADIN + сцинтиляционная стенка: выделение продуктов распада

Экспериментальная установка

IKAR – активная мишень

Выделение изотопов

E_{s3}, channels

Пропорциональные камеры

3 камеры по 64 стрипа + **1** камера 86 стрипов, предусилители GASSIPLEX, σ=150 мкм

«простой» сигнал:

средневзвешенное значение

«сложный сигнал»: фитирование функцией Гатти*

* E. Mathieson, J.S. Gordon NIM 227(1984) 227-282; G. Velichko, CMS NOTE 2000/022

Семинар ОФВЭ ПИЯФ

Отделение фона

Выделение упругих событий

Без выделения упругих событий

Выделены упругие события

Эффективная длина мишени

Построение сечения

$$\frac{d\sigma}{dt} = \frac{N_{el}}{dt N_T M (1 - \epsilon)} \quad \text{mb/(GeV/c)^2}$$

N_{el} – число упругих событий в интервале dt
 N_τ – толщина мишени, част/см²
 M – число налетающих частиц

є – поправка на число упругих событий, потерянных при отборе

Сечения рассеяния ¹²Ве, ¹⁴Ве и ⁸В

Метод анализа

Глауберовская теория многократного рассеяния:

- Эйкональное и адиабатическое приближение
- Амплитуда рассеяния описывается суммой владов от одиночных столкновений с А нуклонов (учитывается многократное рассеяние)
- Используются амплитуды свободного p-p и p-n рассеяния
- Амплитуда рассеяния сворачивается с распределением плотности нуклонов

Параметризация плотности:

- Один Гауссиан: Single Gaussian (SG),
- Симметризованое распр. Ферми: Symmetrized Fermi (SF),
- Гауссиан + гарм. осциллятор: Gaussian + Harmonic oscillator (GO),
- Два Гауссиана: Gaussian + Gaussian (GG),
- Гауссиан + гало-функция: Gaussian + Halo function (GH),
- Сумма Гауссианов: Sum of Gaussians (SOG) плотность представлена суммой функций Гаусса

Анализ сечения ¹⁴Ве

Param.	R _m	R _c	$\mathbf{R}_{\mathbf{h}}$	χ^2
SG	2.86(3)	-	-	1,5
SF	3.06(8)	-	-	0,78
GG	3.20(13)	2.67(3)	5.39(54)	0,88
GO	3.15(10)	2.62(3)	5.30(37)	0,81
GH	3.10(6)	-	-	0,75
SOG	2.95(4)	-	-	0,85

¹⁴Ве \rightarrow ¹²Ве-кор + 2 гало-нейтрона

Плотность вещества ¹⁴Ве

- ¹⁴Ве: выраженная гало-структура
- невозможно определить число нейтронов в гало (2 или 4)

Анализ сечения ¹²Ве

Param.	R _m	R _c	$\mathbf{R}_{\mathbf{h}}$	χ^2
SG	2.43(2)	-	-	3,02
SF	2.55(9)	-	-	1,76
GG	3.00(13)	2.20(2)	5.47(40)	0,9
GO	2.91(9)	2.14(2)	5.28(26)	0,81
GH	2.78(5)	-	-	0,79
SOG	2.80(5)	-	-	1

¹²Ве → ¹⁰Ве-кор + 2 гало-нейтрона

Плотность вещества ¹²Ве

• ¹²Ве: расширенное распределение вещества

Сравнение ¹²Ве и кора ¹⁴Ве

• Структура свободного ядра ¹²Ве отличается от структуры кора ¹⁴Ве

Анализ сечения ⁸В

Param.	R _m	R _c	$\mathbf{R}_{\mathbf{h}}$	χ^2
GG	2.57(5)	2.35(1)	3.78(29)	7,85
GH	2.60(3)	-	-	7,7
GO	2.59(4)	2.30(1)	4.06(22)	7,72

⁸В → ⁷Ве-кор + 1 гало-протон

(предварительные данные)

- первое исследование протонного гало методом упругого рассеяния
- подтверждена гало-структура ⁸В

Радиусы кора и гало

GG, GO и GE: R_c, R_h

Изотоп	R _m , fm	R _c , fm	R _h , fm
¹⁴ Be	3.11	2.65	5.40
¹² Be	2.82	2.18	5.41
⁸ B	2.60	2.33	3.96

Другие эксперименты

изотоп	этот эксперимент	сечение взаимодействия о _г		сечение реакции о _к
		Tanihata et al.	Suzuki et al.	Liatard et al.
¹⁴ Be	3.11 (14)	3.11 (38) 3.16 (38)	3.10 (15) 2.94 (9)	3.36 (19)

изотоп	этот эксперимент	сечение взаимодействия о _г	сечение реакции о _к
		Tanihata et al.	Liatard et al.
¹² Be	2.82 (12)	2.57 (5) 2.59 (6)	2.62 (7)

изотоп	этот эксперимент	сечение взаимодействия о _{int}			распределение импульсов	
		Tanihata et al.	Al Khalili et al.	Obuti et al.	Smedberg et al.	Negoita et al.
⁸ B	2.60 (26)	2.39 (4)	2.50 (4)	2.43 (3)	2.58-2.60	2.6 (1)

Зарядовый радиус изотопов Ве

Изотоп Ве	r [fm]	
7	2.647 (17)	
9	2.519 (12)*	
10	2.357 (18)	
11	2.463 (16)	

*Reference isotope: J. A. Jansen *et al.*, Nuclear Physics A **188** (1972) 337

W. Nörtershäuser et. al, Phys. Rev. Lett. 102 (2009) 062503

Заключение

- Измерены дифференциальные сечения упругого рассеяния протонов на изотопах ^{12, 14}Ве и ⁸В в обратной кинематике.
- Анализ в рамках глауберовской теории многократного рассеяния показывает широкое распределение ядерного вещества в изотопах ^{12, 14}Ве и ⁸В.
 Определены следующие rms-радиусы:
 - ¹²Be: $R_{rms} = 2.82 \pm 0.12 \text{ fm}$
 - ¹⁴Be: $R_{rms} = 3.11 \pm 0.14 \text{ fm}$
 - ⁸B: R_{rms} = 2.60 ± 0.26 fm (протонное гало впервые исследовано этим методом).
- Результаты хорошо совпадают с измерениями, выполненными другими методами для изотопов ¹⁴Ве и ⁸В. В случае ¹²Ве наблюдается некоторое расхождение.
- Полученные экспериментальные данные представляют новую информацию о структуре ядра и дают основу для проверки теоретических моделей.

Коллаборация IKAR

F. Aksouh¹, G. D. Alkhazov², K.-H. Behr¹, A. Bleile¹, A. Brünle¹, L. Chulkov³, A. V. Dobrovolsky², P. Egelhof¹, H. Geissel¹, G. Ickert¹, S. Ilieva¹, A. Inglessi¹, R. Kanungo¹, A. V. Khanzadeev², O. Kiselev¹, G. A. Korolev², X. C. Le¹, Y. Litvinov¹, W. Niebur¹, C. Nociforo¹, D. M. Seliverstov², L. O. Sergeev², V. A. Volkov³, A. A. Vorobyov², H. Weick¹, V. I. Yatsoura², A. A. Zhdanov²

¹ Gesellschaft für Schwerionenforschung (GSI), 64291 Darmstadt, Germany
 ² Petersburg Nuclear Physics Institute (PNPI), 188300 Gatchina, Russia
 ³ Kurchatov Institute, 123182 Moscow, Russia