Нано-ферригидрит бактериального происхождения

Александр Геталов ЛМФ ОФВЭ НИЦ «КИ» – ПИЯФ Семинар ОФВЭ, 16.4.2024

• ДОКЛАД ОСНОВАН НА РАБОТАХ:

ЖЭТФ, 2023, том 164, вып. 6 (12), стр. 1026-1038

МАГНИТНЫЕ МЕЖЧАСТИЧНЫЕ ВЗАИМОДЕЙСТВИЯ И СУПЕРПАРАМАГНИТНАЯ БЛОКИРОВКА ПОРОШКОВЫХ СИСТЕМ НАНОЧАСТИЦ БИОГЕННОГО ФЕРРИГИДРИТА

А. А. Красиков^{а*}, Ю. В. Князев^а, Д. А. Балаев^{а**}, С. В. Столяр^{а,b}, В. П. Ладыгина^b,

А. Д. Балаев а, Р. С. Исхаков а

^а Институт физики им. Л. В. Киренского ФИЦ КНЦ Сибирского отделения Российской академии наук 660036, Красноярск, Россия

^b ФИЦ КНЦ Сибирского отделения Российской академии наук 660036, Красноярск, Россия

- С. В. Столяр и др., ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ, 2020, том 84, № 11, с. 1601–1604
- Ю.В. Князев и др. Физика твердого тела 65(6):979 January 2023
- А. А. Красиков, Ю. В. Князев, Д. А. Балаев и др. ЖЭТФ, 2023, том 164, вып. 6 (12), стр. 1026–1038

- Ферригидрит Fe₂O₃ * *n*H₂O , а также оксиды трèхвалентного железа ε- Fe₂O₃ и β- Fe₂O₃ полиморфных модификаций существуют только в наноразмерном виде.
- Термодинамически Ферригидрит Fe₂O₃ * *n*H₂O или оксигидроксид Fe³⁺ по сравнению с другими гидроксидами и оксидами Fe³⁺ является соединением с наибольшей метастабильностью,
- при увеличении температуры, кислотности среды, размеров и т.д. переходит в гематит (α-Fe₂O₃) и гетит (αFeOOH),
- характеризуется антиферромагнитным порядком с температурой Нееля ~350 К, но наличие дефектов в поверхностном слое приводит к появлению у антиферромагнитной наночастицы значительного нескомпенсированного магнитного момента.
- Иными словами ферригидрит композиционный наноматериал с антиферромагнитным ядром и ферро(ферри)магнитной оболочкой с постоянным магнитным моментом.

Химическую формулу ферригидрита обычно записывают в следующем виде: 5Fe²O³·9H²O, однако ввиду дефектности структуры количество OH-связей может меняться. В ферригидрите присутствует два типа анионных упаковок [3]. При образовании фрагмента с кубической упаковкой, в котором анионные плоскости располагаются в последовательности ABCABC, ионы Fe³⁺ заселяют октаэдрические позиции, формируя два соседних слоя октаэдров, занятых железом. При образовании фрагмента с гексагональной упаковкой, в котором анионные плоскости располагаются в последовательности ABAB (ACAC), формируются одиночные слои октаэдров [4].

- Ферригидрит формируется в ядре белкового комплекса ферритина, представляющего собой капсулу из белка апоферритина, (наружный и внутренний диаметры которого — 12 и 5–8 nm соответственно) [5]. Этот комплекс присутствует в органах практически всех высших животных и выполняет функцию хранения ("депо") железа.
- 3. E. Jansen, A. Kyek, W. Schafer, U. Schwertmann. Appl. Phys. A 74, s1004(2002).
- 4. S.V. Stolyar, O.A. Bayukov, Y.L. Gurevich, V.P. Ladygina, R.S. Iskhakov, P.P. Pustoshilov. Inorg. Mater. 43, 638(2007).
- 5. Z. Wang, C. Li, M. Ellenburg, E. Soistman, J. Ruble, B. Wright, J.X. Ho, D.C. Carter. Acta Cryst. D 62, 800 (2006).

- Начиная с 1980-х годов было открыто большое число различных диссимиляторных железовосстанавливающих микроорганизмов (новая физиологическая группа железоредуцирующие микроорганизмы). Они широко распространены практически во всех экологических нишах, а в некоторых, например, в подземных экосистемах, являются преобладающими, формируя однородное микробиологическое сообщество.
- По температуре обитания эти микроорганизмы делятся на психрофилы (*T* = 0-20°C), мезофилы (*T* = 20-45°C) и термофилы (*T* > 45°C термальные источники).
- По отношению к кислотности: ацидофилы (pH < 6), нейтрофилы (6 < pH < 8) и алкалофилы (pH > 8.5).
- По отношению к кислороду: аэробы, которые нуждаются в кислороде для дыхания, и анаэробы, способные существовать в отсутствии кислорода.
- Все они способны минерализовать большие удельные количества железа внутри и вне клетки, в частности, аккумулируя и ферригидрит.

- Ферригидрит играет огромную роль в метаболизме живых организмов.
- Важной особенностью ферригидрита является его абсолютная биосовместимость.
- Уимическую формулу ферригидрита обычно записывают в следующем виде: 5Fe²O³·9H²O, однако ввиду дефектности структуры количество OH-связей может меняться. В ферригидрите присутствует два типа анионных упаковок [3]. При образовании фрагмента с кубической упаковкой, в котором анионные плоскости располагаются в последовательности ABCABC, ионы Fe³⁺ заселяют октаэдрические позиции, формируя два соседних слоя октаэдров, занятых железом. При образовании фрагмента с гексагональной упаковкой, в котором анионные плоскости располагаются в последовательности ABAB (ACAC), формируются одиночные слои октаэдров [4].
- Ферригидрит формируется в ядре белкового комплекса ферритина, представляющего собой капсулу из белка апоферритина, (наружный и внутренний диаметры которого — 12 и 5–8 nm соответственно) [5]. Этот комплекс присутствует в органах практически всех высших животных и выполняет функцию хранения ("депо") железа.
- 3. E. Jansen, A. Kyek, W. Schafer, U. Schwertmann. Appl. Phys. A 74, s1004(2002).
- 4. S.V. Stolyar, O.A. Bayukov, Y.L. Gurevich, V.P. Ladygina, R.S. Iskhakov, P.P. Pustoshilov. Inorg. Mater. 43, 638(2007).
- 5. Z. Wang, C. Li, M. Ellenburg, E. Soistman, J. Ruble, B. Wright, J.X. Ho, D.C. Carter. Acta Cryst. D 62, 800 (2006).
- В норме ~30% необходимого человеку железа депонируется в виде ферритина.
- Аналогом ферритина являются наночастицы ферригидрита (2-3 нм), синтезируемые анеробными бактериями *Klebsiella oxytoca*, встроеные в полисахаридную матрицу. Поэтому они могут оказаться перспективным препаратом при лечении железодефицитной анемии.

- В работах Ладыгиной В.П. и Ищенко Л.А. был разработан способ получения стабильных золей наночастиц ферригидрита биогенного происхождения.
- Из сапропеля, взятого из озера Боровое в Красноярском крае, они выделили культуру бактерий *Klebsiella oxytoca*, в процессе жизнедеятельности которых на поверхности клеток образуются наночастицы ферригидрита от 2 до 8 нм в зависимости от условий.
- Эти бактерии легко размножаются в лабораторных условиях, и могут быть использованы как «биофабрики» по производству наночастиц.
- Бактерия Klebsiella oxytoca синтезирует два типа наночастиц ферригидрита, различия которых достаточно четко определены с помощью мёссбауэровской спектроскопии. Они отличаются по количеству линий (две или шесть) в картинах рентгеновской дифракции. Соответственно, размер нанокристаллов варьируется от 2-4 нм в 2-линейчатой модификации до 5-6 нм в 6-линейчатой модификации.

- В современной химической промышленности каталитические процессы играют ключевую роль. Оксидные железосодержащие катализаторы, в частности на основе порошков ферригидрита, легированных атомами, Cr, Cu с размерами частиц 2-3 нм характеризуются высокой удельной поверхностью 400 м²/г и имеют большой потенциал применения в катализе, например, в реакциях синтеза углеводородов.
- Большие перспективы в использовании наночастиц ферригидрита в различных экологических приложениях.
 Благодаря высокой удельной поверхности ферригидрит взаимодействует с рядом экологически важных химических веществ, включая мышьяк, свинец и другие тяжелые металлы, с фосфатами и многими органическими молекулами по механизму поверхностной адсорбции/или соосаждения (очистка почвы, стоков, воды ...)

- Технология синтеза биогенных наночастиц, метод отделения наночастиц от бактериальной культуры и изготовление магнитных золей.
- Бактериальная биомасса культуры Klebsiella oxytoca наращивалась в микроаэрофильных условиях на среде Lovley следующего состава (в г/л): NaHCO3 2.5, CaCl2·H2O 0.1, KCl 0.1, NH4Cl 1.5, NaH2PO4·H2O 0.6, дрожжевой экстракт 0.05. Концентрация цитрата Fe3+ варьировалась от 0.2 до 5 г/л. Отбор проб производился от 5 до 50 дней после засева микроорганизмов в питательную среду в зависимости от требований эксперимента
- •
- Для выделения ферригидрита из осадка, полученного при центрифугировании (10 минут, 10000об/мин) 7-10 дневной культуры *Klebsiella oxytoca*, выращенной на среде Lovley, клетки бактерий разрушались ультразвуком (ультразвуковой дезинтегратор УЗДН (1 мин, 44 кГц, 20 Вт)) 3 раза по 3 мин в воде с интервалом 10 минут.
- В течение всего процесса выделения наночастиц при обработке суспензии ультразвуком температура нагревания не превышала 50°C для того, чтобы предотвратить процесс распада органических соединений, покрывающих минеральное ядро ферригидрита.
- Затем проводилось центрифугирование осадка при 10000об/мин в течение 10 мин, осадок снова заливали дистиллированной водой и повторяли цикл 3 раза.
- Далее полученный осадок для удаления жирных кислот заливали ацетоном, диспергировали ультразвуком, инкубировали 30 минут, затем центрифугировали при 10000об/мин в течение 10 мин. Полученный осадок промывали дистиллированной водой и снова центрифугировали.
- После этого полученный осадок диспергировали ультразвуком в водной среде, добавляли NaOH до получения 20% щелочного раствора и инкубировали в течение часа, затем центрифугировали при 10000об/мин в течение 10 мин.
 - Собранный материал несколько раз диспергировали в дистиллированной воде, добавляя каждый раз NaCl до конечной концентрации 50 мМ, для осаждения наночастиц, до получения нейтрального pH супернатанта.
- Полученный конечный осадок снова заливали дистиллированной водой, диспергировали ультразвуком, центрифугировали при 10000об/мин в течение 10 минут для получения золя, при необходимости повторяли процедуру.

 Важные, как с точки зрения физического материаловедения, так и для конкретных применений параметры:

 магнитный момент частицы µ_{un} и

 эффективная константа магнитной анизотропии К_{еff}. Величина нескомпенсированного магнитного момента µи,

• может быть оценена из соотношения

 $\boldsymbol{\mu}_{un} \stackrel{\sim}{\sim} \boldsymbol{\mu}_{at} \mathbf{N}^{b} \qquad (1)$

- Здесь µ_{at} магнитный момент магнитоактивного атома,
- N количество магнитоактивных атомов в частице,
- а показатель степени b зависит от типа дефектов, приводящих к декомпенсации, он может принимать значения в диапазоне 1/3 – 2/3.
- Для наночастиц ферригидрита (2 4 нм) и в молекулах ферритина было получено, что μ_{un} формируется спинами нескольких десятков атомов железа в частице (μ_{at} ≈ 5μ_B, μ_B - магнетон Бора) и достигает

величин $\mu_{un} \approx 100 - 300 \ \mu_B$

(показатель степени b ≈ 1/2)

- Т_в обычно определяется из магнитной восприимчивости, либо намагниченности в малом поле после охлаждения в нулевом внешнем поле (ZFC).
- Для систем невзаимодействующих частиц температура блокировки Т_в определяется как

$$T_{\rm B} = \frac{K_{\rm eff}}{V/\ln(\tau_{\rm m}/\tau_{\rm 0})}k \qquad (2)$$

 из неель-брауновского выражения для характерного времени т переворота магнитного момента частицы

$$\tau = \tau_0 \exp(\frac{K_{eff}}{V/kT})$$

- при τ = τ_m
- т_т характеристическое время экспериментальной методики,
- V объем частицы, величина τ_0 находится в пределах $10^{-9} 10^{-13}$ с,
- k постоянная Больцмана).

Эффективным методом контролируемого управления размерами наночастиц ферригидрита является низкотемпературная (150–200° С) термообработка получаемого золя. (При T>>200° С происходит превращение ферригидрита в гематит.)

Рис. 1. (Цветной онлайн)Типичные изображения, полученные с помощью просвечивающей электронной микроскопии, для образцов FH-0h (фото слева), FH-24h (фото справа), а также распределения по размерам частиц

Рис. 2. (Цветной онлайн). Схематичное представление изменения микроструктуры в результате отжига для образцов FH-0h и FH-24h с соблюдением относительных размеров наночастиц ферригидрита

- При комнатной температуре (рис. За) спектры образцов представляют собой дублет, описывающийся суперпозицией трех компонент. Эти три компоненты соответствует трем неэквивалентным позициям железа (обозначенным как Fe1, Fe2, Fe3) в ферригидрите.
- Катионы железа находятся в трехвалентном состоянии во всех позициях.
- Соотношение относительных заселенностей А этих дублетов в спектрах обоих образцов практически идентично и близко к соотношению 3 : 2 : 1. Применительно к наноразмерным магнитным частицам дублет является проявлением СПМ состояния магнитных моментов частиц.
- Сверхтонкая структура спектра при T=4.2 К (рис. 3b) является признаком заблокированного состояния магнитных моментов частиц µ_{un} в мёссбауэровской методике. Для спектров при T = 4.2 К математическая обработка также как и для T = 300К, показывает три характерные позиции железа (Fe1,Fe2, Fe3) в октаэдрическом окружении.
 - Оба образца представляют собой наноразмерные частицы ферригидрита. Низкотемпературный отжиг не привел к появлению других фаз оксида железа.

Рис. 3. (Цветной онлайн). Мёссбауэровские спектры образцов FH-0h (сверху) и FH-24h (снизу) образцов при 300 K (*a*) и при 4.2 K (*b*). Символы — эксперимент, линии — результаты обработки, закрашенные дублеты D (a) и секстеты S (b) — парциальные составляющие спектров (для D1, D2, D3 S1, S2, S3 номер соответствует позиции железа Fe1, Fe2, Fe3, см. табл. 1)

Таблица 1. Мёссбауэровские параметры при температурах 4.2 и 300 К. IS — химический сдвиг относительно α -Fe, ± 0.005 мм/с H_{hf} — сверхтонкое поле на ядрах железа, $\pm 2 \, \kappa$ Э, QS — квадрупольное расщепление, ± 0.02 мм/с, W — ширина мёссбауэровской линии на полувысоте, ± 0.02 мм/с, A — относительная заселенность позиции, ± 0.05 а.u.)

	IS	H_{hf}	QS	W	Α	Позиция
Образец/ T			-			
FH-24h	0.336	_	0.52	0.37	0.51	Fe1
$300\mathrm{K}$	0.338	_	0.87	0.35	0.37	Fe2
	0.338	_	1.27	0.33	0.13	Fe3
FH-24h	0.488	513	0.0	0.49	0.45	Fe1
$4.2\mathrm{K}$	0.458	489	0.0	0.58	0.30	Fe2
	0.428	459	0.0	0.49	0.23	Fe3
FH-0h	0.334	_	0.47	0.37	0.48	Fe1
$300\mathrm{K}$	0.343	_	0.74	0.29	0.30	Fe2
	0.344	_	1.06	0.33	0.22	Fe3
FH-0h	0.501	508	0.0	0.23	0.47	Fe1
$4.2\mathrm{K}$	0.480	479	0.0	0.33	0.36	Fe2
	0.499	443	0.0	0.58	0.15	Fe3

•
$$T_{\rm B} = \frac{K_{\rm eff}}{V/\ln(\tau_{\rm m}/\tau_0)k}$$
 (2)

- В рамках модели случайной анизотропии авторами [3,8] была предложена следующая зависимость размера кластера L₄(H) от поля:
- 3. M. Knobel, W. C. Nunes, et al. J. of Non-Crystalline Solids 353, 743 (2007).
- 8. J. M. Vargas, W. C. Nune

$$L_H(H) = d + \sqrt{\frac{2A_{eff}}{M_S H + C}}.$$
 (3)

• M_s - намагниченность насыщения частицы,

параметры А_{еff} и С характеризуют интенсивность магнитных межчастичных взаимодействий.

- Выражение (3) содержит корневую зависимость корреляционного размера от внешнего поля, вытекающую из микромагнитной теории [46], и А_{еff} имеет тот же смысл, что обменная константа для нанокристаллических сплавов [3, 8],
- 46. E. M. Chudnovsky, WM. Saslow, and R. A. Scrota, Phys. Rev. B 33, 251 (1986).
- Для рассматриваемого кластера частиц размера L_н константа магнитной анизотропии будет иной, чем для отдельной частицы:

$$K_{H} = K_{eff} / N_{P}^{1/2}$$
,

 где І невз тьной

$$T_B(H) = \frac{K_{eff}V}{k_B \ln(\tau/\tau_0)} \left[1 - \frac{M_S H}{2K_{eff}} \right]^{3/2}.$$
 (4)

- 2/9

 T_{max} (см. легенды на рисунках)

 Подстановка в (2) объема кластера вместо объема частицы (для случая частиц шарообразной формы) и соответствующей константы анизотропии К_н, с учетом объемной концентрации *х* магнитных частиц, приводит к следующему выражению для температуры СПМ блокировки:

$$T_B(H) = \frac{\pi K_{eff} \left[d^3 + x (L_H^3 - d^3) \right]}{6k_B \ln \left(\frac{\tau_m}{\tau_0} \right) \sqrt{1 + \frac{x (L_H^3 - d^3)}{d^3}}} \times \left[1 - \frac{M_S H \sqrt{1 + \frac{x (L_H^3 - d^3)}{d^3}}}{2K_{eff}} \right]^{\frac{3}{2}}.$$
 (5)

Согласно выражениям (2) и (5), температура СПМ блокировки пропорциональна объему частиц.

Семинар ОФВЭ 16.4.2024

- Для анализа (3) и (5) необходимо предварительно определить минимальное количество подгоночных параметров (M_{s,} x, τ_m, τ_o и d_{max}).
- Значения **M**_s определяются из анализа изотерм кривых намагничивания M(H) в СПМ области температур [13,14].
 Обычно такой анализ заключается в фитировании экспериментальных данных функцией типа
- $M(H) = M_{SP}(H) + \chi H.$
- В результате подгонки определяется средний магнитный момент частицы <μ_{µµ}>, причем значения <μ_{µµ}>, обычно, слабо изменяются в области низких температур.
- Для исследованных образцов FH-0h и FH-24h величина <µ_µ>, в области низких температур составляет ≈ 160µВ и ≈ 300µВ соответственно.
- Из соотношения $M_s = \mu_{un}/V$, получим, M_s (FH0h) = 20 Gs и M_s (FH-24h) = 13.3Gs
- (при значении плотности ферригидрита ≈ 3.8 g/cm3).
- Концентрация частиц *x* определяется толщиной экзополисахаридного покрытия частиц ферригидрита, которое присутствует для образца FH-0h. Для этого образца мы берем значение *x*= 0.75, исходя из разумного предположения достаточно тонкого покрытия, средней толщиной порядка 0.15 нм. Для образца
- Общая формула большинства полисахаридов C_x(H₂O)_y,
 где х обычно лежит между 200 и 2500.
- Общепринятые характерные времена $\tau_{m=} 10^2$ с (для SQUID магнитометра , вибрационного магнитометра) и $\tau_{n=} 10^{-12}$ с ,
- максимальные размеры частиц **d**_{max}=3.3 нм для FH-0h и

3D-структура целлюлозы, бета-глюканового полисахарида

• **d**_{max}=5.8 нм для образца FH-24h по данным просвечивающей электронной микроскопиии.

Семинар ОФВЭ 16.4.2024

Температура Т_{irr}, характеризующая начало необратимого поведения зависимостей М(Т) (рис. 4), соответствует частицам наибольшего размера d_{max}.

Таблица 2. Параметры, использованные при построении зависимостей $T_{irr}(H)$ на рис. 5b и отношение $L_H(H=0)/\langle d \rangle$ ($\langle d \rangle = 2.7$ и 3.8 нм для образцов FH-0h и FH-24h соответственно)

Образец	x, %	$K_{eff},$ эрг/см 3	C, эрг/см ³	$A_{eff},$ эрг/см	$\begin{array}{l} L_{H}(H=0),\\ {}_{\mathrm{HM}}\end{array}$	$\frac{L_H(H=0)}{\langle d \rangle}$
FH-0h	0.75	$2.1 \cdot 10^6$	$11.7\cdot 10^4$	$100 \cdot 10^{-10}$	7.4	2.7
FH-24h	1	$1.4\cdot 10^6$	$4.8\cdot 10^4$	$120 \cdot 10^{-10}$	13.0	3.4

Рис. 5. (Цветной онлайн) a — области значений подгоночных параметров C и A_{eff} , при которых достигается хорошее согласие зависимостей $T_{irr}(H)$ и расчетом по модели СА, в координатах 1/C, A_{eff} . b — температуры T_{irr} в зависимости от внешнего поля H (символы) для исследованных образцов. Сплошные линии — результаты подгонки в рамках модели СА — выражения (3) и (5) с параметрами, указанными в табл. 2. Точечные линии построены по выражению (4) при согласии с экспериментом в поле 100 Э. Штриховые линии — «ожидаемые» зависимости температуры блокировки при полном отсутствии магнитных межчастичных взаимодействий (выражение (4)) с величинами K_{eff} , приведенными в табл. 2

Рис. 6. (Цветной онлайн) Поведение размера кластера L_H от внешнего поля, полученное в результате подгонки зависимостей $T_{irr}(H)$ (рис. 5b) по выражениям (3) и (5), в сравнении со средним $\langle d \rangle$ и максимальным dmax размерами частиц образцов FH-0h (a) FH-24h (b)

ЗАКЛЮЧЕНИЕ

- В данной работе была исследована зависимость температуры СПМ блокировки от внешнего магнитного поля Т_в(H) двух образцов порошковых систем наноферригидрита.
- Анализ полученных зависимостей Т_в(Н) показал, что классическое выражение, в котором нет учета магнитных межчастичных взаимодействий, не может описать экспериментально наблюдаемое достаточно быстрое уменьшение температуры блокировки с увеличением внешнего поля.
- С другой стороны, подход в рамках модели СА [3, 8], в котором рассматриваются кластеры частиц, магнитные моменты которых ведут себя скоррелировано, позволяет не только достигнуть хорошего согласия экспериментальных и модельных зависимостей Т_в(Н), но и получить разумные величины эффективной константы магнитной анизотропии. Скоррелированное поведение магнитных моментов частиц является признаком магнитных межчастичных взаимодействий, и, следовательно, в магнитном поведении систем наночастиц ферригидрита такие взаимодействия играют важную и существенную роль.
- Кроме указанной особенности функциональной зависимости Т_в(Н) (быстрое уменьшение с ростом поля), магнитные межчастичные взаимодействия приводят увеличению температуры СПМ блокировки, определяемой в небольших полях.
- Отметим, что при использовании классического неель-брауновского выражения, извлекаемые константы магнитной анизотропии получаются завышенными в несколько раз. В рамках использованного подхода модели СА возможно получить величины констант магнитной анизотропии К_{еff}, как характеристику невзаимодействующих частиц. Для образцов ферригидрита, исследованных в данной работе, величины К_{eff} оказались зависимыми от размера частиц, что позволяет говорить о вкладе поверхностной магнитной анизотропии и разделить константы, соответствующие объемной и поверхностной анизотропии:

 $K_v \approx 4.7.105$ эрг/см3, $K_s = 0.09$ эрг/см2.

Проведенная количественная оценка энергии магнитных взаимодействий превышает возможный вклад магнитных диполь-дипольных взаимодействий, что указывает на обменные (прямые, либо косвенные) взаимодействия между атомами соседних частиц в исследованных системах ферригидрита.

